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mportant to manage operational disruptions to ensure the success of supply chain operations. To ach

im, researchers have developed techniques that determine the occurrence of operational risk ev

assists supply chain operational risk managers develop plans to manage them by detection/monito

ation/management, or optimization techniques. Various artificial intelligence (AI) approaches have

to develop such techniques in the broad activities of operational risk management. However, all of t

iques are black box in their working nature. This means that the chosen technique cannot explain w

iven that output and whether it is correct and free from bias. To address this, researchers argue the

pply chain management professionals to move towards using explainable AI methods for operational

gement. In this paper, we conduct a systematic literature review on the techniques used to determ

tional risks and analyse whether they satisfy the requirement of them being explainable. The find

ight the shortcomings and inspires directions for future research. From a managerial perspective

r encourages risk managers to choose techniques for supply chain operational risk management

e auditable as this will ensure that the risk managers know why they should take a particular

gement action rather than just what they should do to manage the operational risks.

eywords Artificial Intelligence (AI), Big Data, Explainable AI (XAI), Supply Chain Operational

gement (SCORM).

troduction

perational disruptions have the potential to significantly impact on a networked supply chain’s pe

e [1]. Such disruptions arise for various reasons, such as (a) frequent changes in demand and su

s the chain [2], (b) the impact of external factors or events on a supply chain partner which
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gates to other partners [3], (c) the lack of transparency in terms of the dependence among the ch

ers [4] etc. To avoid the consequences arising from such disruptions, researchers have emphasised

for supply chain partners to be proactive rather than reactive in managing operational risks. In

tive style of supply chain operational risk management (SCORM), each supply chain partner de

ehand the occurrence of disruption events that may impact on its operations and take approp

ns to manage them. SCORM is a process that captures disruptions arising from various factors

ernal processes and external events [5], and ascertains the chance of such disruptions occurring be

are developed to manage them. In the ever-growing digital world, SCORM techniques must deal

-scale data, process them and predict the chance of disruption risk events occurring [4]. To ach

im, researchers have used different artificial intelligence (AI) techniques for SCORM. Advancem

e field of AI have led to the foundation of many advanced methodologies that assist in predicting

e of disruption events occurring while at the same time, maintaining prediction accuracy [1] [6

ver, these approaches are "black box" in their working nature. This means that while such methods

the risk managers what disruption events will occur, they cannot explain why they will occur. M

rtantly, these methods ignore the important role of humans in prediction. In other words, they do

der whether the classifiers or predictors used in determining an output are considered as trustwo

liable by the human experts [8]. Due to this drawback, such methods do not have the interpretab

mpleteness to explain the outputs they give. For AI to assist in such decision-making processe

d provide information which the risk manager, as the expert, can completely trust and be certain o

ss.

o address these gaps, eXplainable AI (XAI) is a new field of research in the literature. In broad te

is AI in which the results are explained so that humans can understand them in terms of how and

have been reached. XAI attempts to move from the black box type of solutions in machine learnin

of a "white box" nature. Using this, the experts can judge if the computed output is fair, trustwo

eliable [9]. Such a requirement for interpretation is motivated by the lack of trust in AI-recommen

mes, mainly in the enterprise area, where incorrect resolutions can lead to failures of high im

They are also needed to satisfy the new requirements in corporate governance and regulations

legal, social, and ethical implications. One such example is the General Data Protection Regula

R), which requires companies to provide their customers with the proof that led them to make

decisions. These requirements can be met by using XAI methods that will increase transparenc

nance and also alleviate concerns related to bias [11] [12]. This paper surveys the literature and attem

swer the question as to whether the AI techniques used for SCORM satisfy the requirements for

t to be explained to the risk manager?. For this, we perform a systematic literature review (SLR)
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pts to identify, select and critically analyse papers from the existing literature [13]. As a result of

sis, we attempt to highlight the gaps and identify the areas which require further research to en

y chain risk managers to comply with the different regulations governing them. While researchers

rieta et al. [14] attempted to highlight the shortcomings of the existing techniques in meeting

rements, they do not focus on it from the perspective of SCORM in supply chains. This paper attem

dress this gap.

he rest of the paper is organised as follows. Section 2 lists the four key features that an XAI comp

ithm should possess. These features form the assessment criteria to determine whether the AI techni

for SCORM satisfy the requirements for their output to be explained to the risk manager. Secti

details the inclusion methodology for shortlisting the research papers to be reviewed in the SLR

on 3, we perform a survey of the shortlisted papers and identify the techniques they use to ide

We also evaluate the capability of the techniques to meet the features of XAI. Section 4 specifies

in the current approaches for risk management using AI in supply chains and provides the future

supply chain risk management researchers should take to ensure that they build explainability in

ls. Section 5 discusses the limitations of this work. Finally, in Section 6, we conclude the paper.

inking the requirements of XAI with AI techniques

his section first discusses the four key features (XR1-XR4) that an XAI system should possess to exp

n output is reached. We then translate these features into three requirements (R1-R3) which we u

mine whether the existing AI approaches for risk management have it in their workings or not. T

requirements form the assessment and comparison criteria that we use to evaluate if the existin

aches used in SCORM can assist in determining if the recommended output is transparent, trustwo

nterpretable. Finally, we conclude this section by discussing the methodology we adopted to select

rs used to perform the SLR.

Features which an XAI model should meet

he overall aim of XAI is to help experts understand, trust, and efficiently accomplish the results o

ology. XAI’s foremost intention is to provide more explainable models while supporting a high lev

ing performance/prediction accuracy [15]. An XAI model should meet the following features:

It should be trustworthy (XR1): To affirm the trustworthiness of the data and methods used, a

model should meet the following requirements:

1. Confirmability: Confirmability establishes that data and interpretations of the findings are

derived, not figments of imagination [16].
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2. Transferability: Transferability is a generalization that provides evidence that the results c

apply to other contexts, situations, times, and populations [17].

It should be complete (XR2): Admissibility is the crucial feature of a complete algorithm. An algor

is admissible if it is guaranteed to pick the best solution when multiple solutions exist and should pro

a solution when a single solution exists and terminate after that [18].

It’s working should be transparent (XR3): The transparency of an approach should demonstrate

it is using the data to make decisions or predictions. The edible and audible programming featur

an algorithm should state and explain why the method, or an assigned part in the structure, prov

particular outcomes [19]. In other words, the transparency of an approach should provide a step-by-

explanation of how it has reached the goal [20].

It’s outputs should be interpretatable (XR4): Interpretation is the ability to explain the output

mathematical and logical proof [21]. As an extension of interpretation, XAI should aim to desi

mental model that can visualize the output according to the user’s requirements and demands

Interpretability is also known as comprehensibility in the literature [14].

igure 1 represents the key features along with their sub-features that helps to fulfil an XAI mo

rements. Figure 1 also has features that are not discussed above. These are the secondary features

nsure the quality of an XAI system.

o check if the existing AI approaches in SCORM meet the required XAI features, we conduct a com

ve review of AI-based techniques by classifying them into different categories according to their wor

Based on the analysis, we determine whether they can elaborate and explain how the output has

ed. To effectively undertake such an analysis, we determined the following three requirements w

I model should have as a precondition for them to meet the XAI’s requirements.

Requirement 1 (R1): Ability to capture all the features that directly or indirectly trigger the operati

activities associated with operational risks: It has been mentioned in the literature that a lack o

formation on risk features and not capturing their influence have resulted in a poor risk managem

system that can lead to complete system failure [23]. So, this requirement determines if the AI t

nique, at an input level, either captures an ontological representation of features according to

hierarchy present in it [24][25] or mathematically or logically connects the features using conditi

probability [26]. Having such an ontological or probabilistic dependency will capture the dependen

among the features. Doing so will ensure that the output risk class will be evaluated by considerin

Jo
ur

na
l P

re
-p

ro
of
4



the

• matically

pre-

nput

ition

the

[27].

• iated

tems

del’s

for

ent-

Journal Pre-proof
Figure 1: The scaling features of an Explainable AI methodology.

the features associated with it and by applying any conditional probability that will help satisfy

trustworthy (XR1) features of an XAI model.

Requirement 2 (R2): Ability to assess all the risk-related features using AI approaches that are mathe

proven and logically well-defined: As algorithms are supposed to be unbiased and impartial when

dicting an output, this requirement determines if the applied algorithm can explain how each i

feature has been used mathematically or logically. Such a mathematical explanation is a precond

of transparency (XR3 feature of the XAI model), and the level of interpretability depends on

quality of transparency or admissibility (XR2 feature of the XAI model) of the processing system

Requirement 3 (R3): The ability to visualize the output with internal and external features assoc

with operational risks to the users in an explainable way: Once the risks are recognized, AI sys

should visualize the path within the features that led to the high-risk features to assure the mo

trustworthiness. This will further assist the risk classification routine to be intelligent enough

automated decision-making [28]. To express such visualisations, at an input level, the anteced
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consequent relationship between the features needs to be captured [29, 30]. Another technique

can be used for this is the IF-ELSE relationship. This condition helps to construct a decision

to show the output/s resulting from inputs [31] [32]. So, this requirement determines if the exis

algorithm can capture all the features along with their dependencies and use them while visual

why it has led to the output it is recommending for it to be interpretable (XR4 feature of the

model) to the risk manager.

hese three requirements form the assessment and comparison criteria we use to evaluate the exis

proaches used in SCORM in the literature. Figure 2 shows how the features of XAI relate to

rements from AI techniques that are looked for in our analysis. Furthermore, the figure also sh

features need to be present at an input level for the AI techniques to meet its requirements. In

ing sub-section, we discuss the methodology we adopted to perform the SLR of the articles that a

sed techniques in SCORM.

Figure 2: Linkage between XAI and AI requirements.

Review Methodology

o perform the SLR, we adopt the Preferred Reporting Items for Systematic Reviews and Meta-Ana

SMA) approach, which assists in reporting systematic reviews. Figure 3 shows the different step

MA that were used in our selection process to identify the papers that we need to review for our S

ef detail of the selection process is explained next:
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Figure 3: PRISMA flow diagram to show the screening and selection process of articles.

ep 1: Query String selection

o formulate the search query, we first need to set the scope of our analysis. As mentioned in Sectio

alyse if the existing SCORM approaches satisfy the requirements for their output to be explaine

isk manager. So we only focus on analysing how AI techniques have been used in:

supply chain risk management - this excludes analysing how AI techniques have been used in the b

areas of managing supply chain operations, such as transportation, inventory management etc.

operational risks - this excludes analysing how AI techniques have been used in other risk managem

tasks such as quality risk management, performance risk management etc.

e first developed a basic set of keywords and their derivatives (e.g. operation*, supply chain) to ide

es which apply AI for operational risk management to identify the relevant research articles. We did

arching for ten articles from highly cited journals related to AI and SCORM. We used their keyw

derivatives) as our initial list of keywords and used them in subsequent searches to harvest additi

es and expand the keywords used with high frequency in this field. We subsequently refined t

ords, and our final set was as follows:

utomatic*OR Automation OR Computational OR Machine Learning OR Neural Network OR Hy

uzzy OR Evaluation OR Probabilistic OR Bayesian OR Markov) AND (Supply Chain OR Industry

prise OR Entrepreneur OR Business*) AND (Operational Risk OR Interruption Risk OR IT Fa

raud risk OR Uncertainty OR Vulnerability OR Threat OR Disruption OR Disturbance OR Crisis

ter OR Catastrophe OR Hazard OR Emergency OR Opportunity OR Security OR Safety OR Flex
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OT (Legal Risk OR Financial Risk OR Environmental Risk OR Socio-political Risk OR Organiza

OR Human Behaviour Risk OR Performance Risk OR Quality Risk) AND (Mitigation OR Optim

OR Handle OR Capture OR Reduce*) NOT (Inventory Management OR Warehouse Management

sportation OR Logistic Management OR Supplier Management )

ep 2: Database selection

sing the defined search criteria and search strings, we collected research articles and their related cita

from the following databases: ScienceDirect, (Elsevier) SCOPUS, Taylor & Francis Group, Bus

e Complete (EBSC), Springer Link, Emerald Insight, ABI/Inform (ProQuest’s), and IEEE.

ep 3: Article selection

n inclusion criterion for the article to be considered was that it should be from a top-tier peer-revie

al or conference. We scanned the selected electronic databases using our defined search strings wit

restriction which returned 1485 articles initially. From this result, 920 of these were either duplic

n-relevant studies, which were removed. We screened the remaining 565 references on their title

act and further removed 278 articles as they did not meet the pre-determined inclusion criteria

es remained which had a clear focus on SCORM and met the following requirements:

Each article is peer-reviewed and written in English.

Each article had at least one practice, technique or methodology that closely assessed the metho

analyze the risk-related issues in supply chains.

The technique used in the paper is under the umbrella of artificial intelligence.

ep 4: Analysis of Shortlisted articles

this section, we visualize the shortlisted articles according to their publication year (Figure 4), th

iques they used (Figure 5 which are discussed further in the next section) and the risk managem

which the shortlisted articles addressed (Figure 6). The risk management steps are divided into t

ories. The first is detection or monitoring, in which the approaches either detect or monitor the su

risks. The second ismitigation or management, in which the methods attempt to reduce the determ

of risks. The third is optimization, in which the risks are reduced based on the best option poss

ext section discusses these articles in detail.Jo
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Figure 4: Publication year Vs Publisher of the included articles.

Figure 5: Classification of AI techniques used in SCORM.

nalysis of the articles

o study the workings of each approach, we divide them in five categories based on their input accept

ilities, data processing method, and output generating procedures, as follows:

Evolutionary Computation (EC),

Fuzzy Logic (FL) and similar uncertainty handling algorithms,

Computational Creativity (CC),

Machine Learning (ML) and similar data mining algorithms, and

Probabilistic Methods (PMs).

s shown in Figure 7, these approaches focus on the processing phase of the risk management process

form the basis on which the output is generated. In the next sub-sections, the working of the techni

ch category is discussed, which is followed by an evaluation against the requirements R1-R3 and

link with the XAI requirements XR1-XR4 defined in the previous sub-section.
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Figure 6: Pie chart showing the risk management step addressed by the articles.

Evolutionary Computing

he evolutionary computation (EC) approaches are stochastic algorithms. Computational intellig

and evolutionary algorithms (EA) are subsets of evolutionary computation [33]. An EC uses m

s inspired by natural evolution, such as reproduction, recombination, and selection. Evolutio

ithms often perform well-approximating solutions to all types of problems because they ideally eval

articipating parameters and do not assume the underlying problem specifications [34]. Various typ

tionary mechanisms are applied to measure, shape, and optimize risks in different fields such as su

, image processing etc. Commonly used optimization approaches include meta-heuristic optimiza

ithms applying the fitness function, fitness approximation, differential evolution, and numerical

ion, different evolution strategies, and different learning classifier systems [35]. Standard and pop

lgorithms are ant colony optimization, cuckoo search, bees algorithm, particle swarm optimiza

icism optimization and other optimization algorithms [36]. Most of these are used for combinat

ization, graph problems, numerical optimization, and to solve connective, constrained and behav

l problems [37]. EC algorithm-based articles can be classified into three categories, as follows:

. Survey or Simulation-based articles

simulation is the imitation of the operation of a real-world process or system over time. The aut

ed survey data or simulation techniques to shed light on the underlying mechanisms that contro

iour of a system and to predict the future behaviour of a system and determine its influence

40]. The main drawback of simulations is that they are not real, and outcomes can vary in diffe

onments and situations. This drawback impacts the trustworthiness of an AI system. For exam

ai et al. [38] developed a simulation model that consists of multi-agents (MA) and which integr
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Figure 7: An overall structure of AI methodologies to encapsulate supply chain operational risks.

us entities related to operational threats. This results in a reactive estimation of risks from probabi

ls that can develop a response to risks. While the system is mathematically well-defined but us

ation approach, the transferability of the model is not guaranteed. This violates the trustworth

rement needed from an XAI model. Chen et al. [39] performed a survey-based study to verify

onship between supply chains and integrated operational activities to reduce the risk. The aut

ed the knowledge-based view that supports "Theory of Swift" and implemented several statis

ods such as structural equation modelling (SEM) to test the hypotheses. Confirmatory factor ana

) was also used to examine convergent and discriminant validity. Scale reliability was assessed thro

struct reliability (CR) value, and the linear structural relations tool (LISREL) where the likelih

ation method was used to validate the system. The research mainly focused on operational risk

ted a variance-based view of risk. Still, it does not consider the other risk aspects that represent ris

ating cross-sectional data. Furthermore, SEM and CR involve using a hypothesis. Therefore, the sy

give different results based on a different set of hypotheses that question the system’s trustworthi

ver, the SEM and CR methods are statistically well-defined, satisfying the transparency and trustwo
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rement.

azelaar et al. [40] used the process-performance paradox in estimating operational risks by professio

domain of operations and supply chain management (OSCM), based on survey data. The authors c

ated the sample data and designed a behaviour experiment scheme. The limitations of the research

lows: 1) the system expects that OSCM-professionals will ensure that they are adequate to predict

business risks; and 2) valuations do not improve with augmenting expertise. The process perform

ox model considers only selected characteristics as risk factors. The system is not able to cap

pects involved in risk. Therefore, the system is suitable for a small section of the system w

arameters are fixed and permanent and not the entire risk management system. Thus, it vio

rustworthiness requirement of the XAI model. Van et al. [41] presented a survey-based stud

erformance of horizontal control features and an administration analysis on improving supply c

ionalities. A horizontal alliance is the integration between companies that are opponents in a sim

r. Contenders team up to mutually increase their position in the business. The study shows ho

ontal and cross-functional management control strategy configure innovative supply chain setups

ibute additional insights into how precisely horizontal control policies are formed and which approa

sed. Based on the experimental validation of associations among constructs, it was observed that a f

rd parties on the integration of the supply chain and a comprehensive performance measurement sy

ibutes to the connection of supplementary services. Moreover, the expansion of computation operat

ibutes significantly to the extension of third-party logistics alliances in the supply chain and exp

hird-party logistics service providers are extending their grip on supply chains and focusing on pra

through re-configuring the supply chain setup. The proposed system is a survey-based study b

perimental validation. In general, a static model using experimental data cannot evaluate all su

functions, and third-party logistics vary with the structure and objectives of the company. As a re

ystem is not trustworthy and may produce misguided output. Table 1 presents and compares diffe

y- or simulation-based articles using EC techniques to determine whether they meet the requirem

tisfy the features of an XAI system.

1: Comparison of Survey or Simulation-based articles using EC algorithms in committing to AI and XAI requirem

f. AI Methods Step of risk management AI Requirements XAI Requirem
R1 R2 R3 XR1 XR2

] MA Mitigation/Management × X x × X
] SEM, CFA, CR, LISREL Mitigation × X x × X
] Process-Performance Paradox Assessment/Management × X x x X
] Horizontal Alliance Mitigation/Management × X x × XJo
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. Statistical or mathematical algorithm-based articles

atistical or mathematical algorithms have well-defined explanations of the steps used to process

data and produce the output. An explanation of each step is the fundamental requirement of

approach that also builds on the transparency of the system and validates the output. For exam

i et al. [42] proposed a Failure Mode, Effects and Criticality Analysis method (FMECA) to determ

haracterise short-time operational fluctuations and vulnerabilities. The algorithm calculates the

ity number (RPN) scores used to quantify risks for users, designs, and processes. Finally, a behav

l is developed using petri nets to categorise the threats according to the degree of risk level.

ique uses both qualitative and quantitative data to make a proactive decision. FMECA is a well-kn

tical approach for capturing risk and risk-related activities. The system is complete and the app

ods are transparent. Lin et al. [43] introduced an extended balanced scorecard (BSC) with the

k-adjusted returns and insolvency risk. The authors assessed qualitative data and the results exec

the forecasting model that incorporates a hybrid filter-wrapper (HFW), random vector functi

etwork (RVFLN), and ant colony optimization (ACO). HFW decreases the storage requirement

omes the dimensionality problem. RVFLN has a high-speed learning capacity used to construct

asting model. ACO is used to handle the opaque nature of RVFLN and extract the decision rules

N. The outcome is a proactive definition of business policies, including operation strategies and ca

ture, to survive in a turbulent environment. From the XAI’s point of view, while the system is comp

ot interpretable and trustworthy.

ou et al. [44] optimised operational performance dimensions based on the interactions between exte

y chain integration and internal production systems. The authors apply the proposed model to diffe

ction models such as one-of-a-kind, batch and mass systems. The authors considered both qualita

quantitative data to proactively optimize operational performance. But the authors only focu

al production systems and they do not consider the external contingency factors that impact th

, while the system is complete, it is not trustworthy and interpretable. Singh et al. [45] develop

-stage global network (MsGN) model that incorporates a set of risk factors to make optimal decis

ding the facility locations, and inter-rank quantity flows. As with other mathematical models, while

s proposed by the model have a mathematical explanation, they lack interpretability in terms of

are computed. Ali et al. [46] developed a knowledge sharing framework to manage operational

d supply chains. The authors used several evolutionary methods such as confirmatory factor ana

), common method bias (CMB), and average variance extracted (AVE). While the techniques used

inable in mathematical terms, the output represented by them is not interpretable. Soliman et al.
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ed the link between industry efficiency standards and the dimensions of coordination, e-supply-c

tors and knowledge supervision. An analytic network process was used to study the different dimens

ive an output based on a firm’s characteristics and objective. So, while the system consistently proce

nderlying data set, its results are not interpretable and transferable. Table 2 compares the diffe

tical or mathematical model-based articles using EC techniques to determine whether they meet

rements to satisfy the features of an XAI system.

2: Comparison of the Statistical or Mathematical model-based articles using EC algorithms in committing to A
equirements.

f. AI Methods Step of risk management AI Requirements XAI Requirement
R1 R2 R3 XR1 XR2 XR

] FMECA Detection/Monitoring × X × × X X
] HFW, RVFLN, and ACO Management x X x × X ×
] OKP, BP, and MP Mitigation/Management x X x × X ×
] MsGN Optimization × X x × X X
] CFA, CMB, AVE Management × X x × X X
] KC, KS, KT, KA Mitigation/Management × X x × X ×

. Algorithms that use hypotheses in their workings

hypothesis is an educated guess that can be tested through study and experimentation. Any system

hypothesis is making a guess initially, after which the hypothesis is either proven or disproven. Altho

algorithms include vague and complex processing with fewer explanations, they are very effectiv

lex and extensive data processing and ased analysis has been applied in many supply chain-based

gement applications. For example, Munir et al. [48] explored supply chain risk management as a

r among internal, supplier and customer integration and operational activities to improve operati

rmance. Structural equation modelling (SEM) was used for experimental examination and confi

factor analysis (CFA) was used to observe a shared variance between the hypothesized variables a

er variable. Principal component analysis (PCA) was applied to reduce the dimensions of the dat

ommon Method Bias (CMB) based on chi-square statistical significance was used to check for st

difference between the original model and a measurement model, including hypothesized variables

heoretically irrelevant marker variable. While different mathematical models were used in the anal

drawback in terms of explainability is that it defines latent variables using observed variables

a structural model that assigns relationships between latent variables to produce a causal model

ys assumptions. This violates the features of trustworthiness required from an XAI model. Swier

[49] proposed an approach to manage operational risks in supply chain through demand plann

authors use a partial least squares (PLS) path model to model the constructs and their hypothes

onships with latent (unobserved) and manifest (observed) items. Principal component analysis (P
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verage variance extracted (AVE) were used to calculate the unidimensionality, reliability and val

model. The proposed approach used parameters related to demand planning, however there are o

eters which they did not consider which affect operational risk. Furthermore, while PLS, PCA

are well-known statistical approaches with an appropriate mathematical explanation, they may

ent results with a shift in the order of predictors. These characteristics impact the trustworthine

ystem.

ruque et al. [50] utilised hypotheses to analyse the effects of community cloud computing on integr

y chain operations based on information and physical flows. The authors applied factorial ana

EM to test their hypotheses. Techniques such as resource-based view (RBV), knowledge managem

) and social capital theory (SCT) were used to build the theoretical framework. However, wi

thesis-based model, the model considers causal assumptions which violates the trustworthiness

m in terms of XAI requirements. Anggraeni et al. [51] developed a Failure Mode and Effect Anal

e of Risk (FMEA-HOR) approach to model supply chain operational risk identification and dev

tive actions for mitigation. The proposed approach works through two stages of modelling, nam

1&2. In HOR1, the risk events and risk agents are identified, and in HOR2, strategies to mitigate

le the potential risk types are developed. While FMEA is a popular statistical approach for captu

nd risk-related events, HOR1 and HOR2 assume that all the risk factors are known. If these are

red, then the result violates the trustworthiness of the system in terms of XAI requirements. Vold

. [52] created a quantitative multi-objective approach in a global supply chain model to integ

ssing time and cost (PT & C) with operational risk for designing and optimizing a monitoring sys

re Mode and Effects Analysis (FMEA) was used to enable, identify, and rank critical hazards and r

reto-efficient monitoring model was implemented to quantify and resolve the seeming contradict

g these measures. However, the Pareto operation partially assesses a collection of “actions” with m

nsional outputs. This assumes a weak “desirability” partial arrangement which considers that only

ss is better for all the outcomes. For this reason, it is challenging to construct an accurate, trustwo

ulti-action-based system. Arashpour et al. [53] proposed optimization techniques to boost su

rk execution. However, the authors’ model is based on hypotheses, which has drawbacks in term

ing the trustworthiness of the model. Hacioglu et al. [54] evaluated how new technical knowledge

-security concerns of automatic transport assists in developing new supply chain supervision poli

uthors applied techniques such as artificial neural networks, image processing, multi-purpose deci

ng, blurred linguistic variables, and electronic operations to enhance the production of the supply c

m. While these algorithms are popular AI approaches, they are black box in nature and do not inc

ns in the loop. Table 3 compares different hypothesis-based approaches using EC to determine whe
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meet the requirements to satisfy the features of an XAI system.

Table 3: Comparison of hypothesis-based articles using EC algorithms in committing to AI and XAI requirements.

f. AI Methods Steps of risk management AI Requirements XAI Requirem
R1 R2 R3 XR1 XR2

] CFA, PCA, CMB Mitigation/Management × X × × X
] PLS, PCA, AVE Mitigation/Management × X x × X
] RBV, KM, SCT Mitigation/Management × X x × X
] FMEA-HOR Mitigation × X x × X
] Pareto Model, FMEA Optimization × X x × X
] Supply Chain Optimization Optimization x X × × X
] ANN, Image processing etc. Mitigation/Management × × × × ×

Fuzzy logic and other uncertainty handling algorithms

zzy logic has been widely applied in many fields to handle uncertainty, remove noise and opti

ions [55]. In an uncertain domain, an entity is a form of multi-valued logic in which the truth va

e entities are a real number between 0 and 1, both inclusive. Fuzzy logic uses this phenom

ndle the concept of partial truth and determine the output [56]. This enables them to repre

ness and ambiguous information that changes the membership values [57]. Fuzzy logic, belief

(BRB), evidential reasoning (ER), rule-based inference methodology using the evidential reaso

ER), Dempster Shafer (DS) theory, fuzzy neural networks (FNNs) and other qualitative assessm

ithms widely use fuzzy (opaque/uncertain) data handling [58]. These models can recognise, repre

pulate, interpret, and utilise data and information that are vague and lack certainty. For exam

hi et al. [59] developed a data-driven decision-making approach using multi-stage stochastic progr

P) and conic quadratic mixed-integer programming (CQMIP). The proposed method obtains risk-av

ions by employing the conditional value at risk (CVaR) as the objective function on both the qualita

uantitative data. The system includes humans in the loop to initially assign the "degree of influe

indicates how strongly a feature supports the output. However, the result varies in different scena

its trustworthiness can be questioned. Rokou et al. [60] introduced a proactive risk breakdown struc

) that identifies all the risk categories related to each step of supply chain operational activity.

sed approach ranks the risks in a hierarchical order, demonstrates the solution strategies, and fol

the risks that arise from demand variability and other supply chain activities. Kazancoglu et al

sed a fuzzy analytic network process (ANP) to score an organisation’s overall operational performa

qualitative and quantitative factors were used to determine the weights of the criteria before usi

g method to calculate the weighted total score.

aiado et al.[62] developed a fuzzy rule-based maturity model (MM) with a probabilistic appro
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ly a Monte Carlo simulation, to evaluate companies on their supply chain management criteria. A f

ased model imposes a degree of belief to assess the weight of any feature associated with any rule. A

[63] proposed a method combining fuzzy cognitive maps (FCM) and Bayesian belief networks (BBN

ve BBN capability in modelling operational risks. FCM was used as a problem structuring metho

ruct the migration from FCM to BBN. FCM is a hybrid methodology that combines fuzzy logic

rtificial neural networks (ANNs). As such, it inherits the ambiguity and vague characteristics of FL

. However, researchers have strengthened FCM using the activation Hebbian algorithm (AHL), w

ss transparency in the decision model. Sun et al. [64] presented a risk-hedging policy for shipm

ment to diversify the shipment selection when enough reliable shipments are available. The aut

a stochastic optimisation model to calculate the weighted value-at-risk using the Pareto frontier.

o operation partially assesses a collection of "actions" with multi-dimensional outputs assuming a w

rability" partial arrangement. It considers that only one process is better for all outcomes. So,

ant system is not trustworthy for all scenarios. From the above discussion, it can be summarised

and other uncertainty handling algorithms can handle a large amount of data and assist in ma

lex decisions by capturing uncertain and irregular patterns of data. But the main limitations of

of algorithms, as shown in Table 4, is that they use an opaque or unexplainable way to process

and thus their processing is a black-box model.

le 4: Comparison of fuzzy logic and other uncertainty handling algorithms in committing to AI and XAI requireme

AI Methods Steps of risk management AI Requirements XAI Requirements
R1 R2 R3 XR1 XR2 XR3 XR4

MSSP, CQMIP, CVaR Management/Mitigation × X × × X × ×
RBS Management/Mitigation × X × × X × ×
Fuzzy ANP Management/Mitigation × X × × X × ×
Fuzzy rule-based Maturity Model Management/Mitigation × X × × X × ×
FCM, BBN Optimization × X × × X X ×
Risk-hedging policy with Pareto frontier Management/Mitigation × X × × X × ×

Computational Creativity

omputational creativity (CC) or artificial creativity involves applying computer technologies to emu

, stimulate and enhance human creativity [65]. CC involves experimentation to find innovative i

hought processes in different fields. The approach often applies artificial intelligence (AI) to cr

nly features such as bio-metrics analysis and implementation (fingerprint, retina identification, D

rint, etc.). While computers apply mathematical precision and logic, creativity is closely related to

ious exclusive domain [66]. CC algorithms use inductive or deductive reasoning, such as Deep Blu

on, respectively. Other systems using CC algorithms may use a knowledge-based procedure, case-b

ning (CBR) or a novelty algorithm. Creativity is one of the requisite components of artificial gen
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igence, which implies a system that can find unfamiliar problems [67]. Wichmann et al. [68] gener

ated supply chain maps using supply chain mining for operational supply chain risk managem

process uses natural language processing (NLP) technology from openly available text sources

automatically generate, verify, and enlarge existing maps with supplementary supplier informa

authors chose the Toyota supply chain as a case study, where supply chain mappings were base

-sighted 1-to-1 relationships and could not be automatically derived. Moreover, the result was stro

dent on the amount and quality of the available input data. In this case, the data was provide

h engines whose performance could not be controlled. As shown in Table 5, this particularity does

ly with the transitivity feature and breaks the trustworthiness of the system.

Table 5: Comparison of the CC algorithm in committing to AI and XAI requirements.

f. AI Methods Steps of risk management AI Requirements XAI Requirements
R1 R2 R3 XR1 XR2 XR3 XR4

] NLP Management × X × × X × ×

Machine Learning

achine learning (ML) is a subgroup of artificial intelligence that implements computer algorit

date automatically through experience. ML algorithms form a model based on sample data,

n as "training data". This data is then used to make predictions or decisions in various fields

fic to supply chains, ML has been extensively applied for operational optimization, cost optimiza

nd and supply synchronization, and E-commerce data management activities [70]. ML approaches

ntionally be split into three broad classes, based on the nature of the "signal" or "feedback", nam

vised learning, unsupervised learning and reinforcement learning [71]. These algorithms include var

of ANNs, deep learning (DL), and other classification and clustering algorithms to determine and

output. For example, Lejarza et al. [72] developed an approach to optimize the operational ris

ling perishable products. The authors used multi-integer linear programming (MILP) in their mo

ver, the issues with MILP is that it can either give an infinite solution, no solution or an unboun

ion as an output. Several features, such as partitioning, slack, surplus, and artificial variables,

ded in the algorithm to avoid these unexpected outputs. These additions, however, make the proces

ILP complex and opaque. Wong et al. [73] addressed the issue of demoralization in supply chain

lishing trust among the nodes. The authors provided an overview of potential consideration factor

OE (technology, organisation and environment) framework among Malaysian small-medium enterpr

framework adopted the blockchain technology that incorporates an ANN and partial least squ

tural equation modelling (PLS-SEM) approach. Using the proposed method, the authors elimin
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executive entrepreneurs and established trust via the networked nodes. Helo et al. [74] impleme

ckchain-based logistics monitoring system (BLMS) within the operational and supply chain con

eate transparency, automation and trust in supply chains. The proposed model used blockchains

l twins to secure assets and encode legal documents for digital identity. However, several cryptogra

cols are used in the application of blockchain in supply chain management to establish public-pri

nd digital twins. This makes the system imprecise and elusive in terms of its transparency. Dolgui e

eveloped a blockchain-oriented dynamic model for smart contract design with multiple logistics ser

ders using a control methodology. The authors modelled virtual operations of physical transaction

l the cyber information service. Virtual functions technically can reduce continuous state variable

mine the start and completion of information services. However, the proposed approach is complex

ves opaque processing steps.

o summarize, ML algorithms are mathematically well-defined, process a large amount of data and m

lex decisions. However, as shown in Table 6, these approaches depend on the data on which they

ed. This does not guarantee that they will work as they should on a different set of data. Furtherm

outputs cannot be interpreted, which violates one of the main requirements of an XAI model.

Table 6: Comparison of the ML algorithm-based studies in committing to AI and XAI requirements.

. AI Methods Steps of risk management AI Requirements XAI Require
R1 R2 R3 XR1 XR2

] MILP Optimization × X × × X
] Blockchain, ANN, PLS-SEM Mitigation/Management × X × × X
] BLMS Management × X × × X
] Blockchain-oriented dynamic model Mitigation/Management × X × × X

Probabilistic Models

robabilistic methods are nonconstructive and primitively used in combinatorics to provide a specific

thematical entity [76]. Probabilistic approaches calculate the probability of an object being rando

n from a precise class. The chance of an arbitrary entity from a particular event is strictly gre

zero and smaller than one [77]. Another way to use probabilistic approaches is by determining

ted value of a random variable. If the current probability of any random event is known, the

ssible to calculate that specific event’s future likelihood [78]. This particular feature of probabi

ods is specially used in supply chains to set future goals, avoid risks and optimise decision making.

ple, Guertler et al. [79] introduced a system dynamics simulation (SDS) approach to detect the cha

k magnitude as continuous evaluations. The authors used mathematical equations to simulate re

assist them in determining their system’s reaction to operational risk. While the proposed appr
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clear mathematical and logical explanations that demonstrate its completeness, it does not con

ner details, such as individual features or events that produce a general representation of the sys

impacts the trustworthiness of the model. Stefanovic et al. [7] developed a proactive supply c

rmance management approach that incorporates data mining predictive analytics. The system me

ss modelling, performance monitoring, data mining and web portal techniques into a single model

ls a supply chain configuration. This assists in a specialised collaborative analytical web portal

performance monitoring and decision making. While the approach uses probabilistic models wi

ematical explanation, it is based on previous history and activities which are not appropriate for new

nging decision making. Probability-based models include mathematical or statistical approaches

a precise mathematical and logical explanation of each step, making them complete and transpa

n terms of their interpretability and trustworthiness, they need improvement.

Table 7: Comparison of the existing probabilistic model-based studies in committing to AI and XAI requirements.

f. AI Methods Steps of risk management AI Requirements XAI Requirements
R1 R2 R3 XR1 XR2 XR3 XR4

] SDS Management/Mitigation × X X × X X ×
BI, KPI Management/Mitigation × X X × X X X

iscussion and directions for future work

this section, we summarise the existing AI methods used for SCORM and identify the gaps in mee

AI features. We then discuss some of the widely used XAI methods and highlight the gaps that

addressed.

Summary of the gaps in the existing AI approaches in meeting the features of XAI

ost AI algorithms work at an acceptable level when there is enough data and domain knowledge. W

of them, such as decision trees and regression models, are transparent in their working nature, ot

ot to the extent that even the designer cannot fully understand how they work. This is specifically

ep learning models. However, like other sectors, AI has been used in the SCM domain due to its pr

r in big enterprises such as Google and Facebook. As its current stands, AI is safe to use in low s

xt but digitalized SCM, which is evolving fast, is a high stake context in which the impact of w

ions based on algorithms can be very costly. The current literature of AI applications in SCRM,

] [81] does not consider this impact. Specific to the application of AI in SCORM, from the discus

e above section, it can be seen that they possess a unique set of capabilities and have a varying de

plicability. While such techniques assist in the various tasks of risk management, as shown in Figu

ll of them do this while meeting the features of XAI, as follows:
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Figure 8: Gaps in the existing AI approaches used in SCORM in meeting the features of XAI.

Researchers have applied EC algorithms to detect, reduce and optimize operational risks. Gener

EC algorithms take a group of operation-related features as input and after evaluating the feat

either identify, reduce or optimize the corresponding risks based on supervised learning methods. S

algorithms can process multiple risk-related parameters and can detect multiple risks simultaneo

[42]-[54]. While these approaches can produce highly optimized solutions and are capable of a l

amount of data handling, dimensional variants and extensions which are used for better managem

planning in industrial organizations [82], the disadvantage is that they use a hypothesis or case-b

reasoning which makes the system unreliable and elusive [83].

Fuzzy logic and other uncertainty capturing algorithms are logic-based concepts that can assess

membership of a specific set expressed in ‘’degrees of truth” or “degree of belief” values ranging

0 to 1 [84]. Techniques in this category combine the inputs based on the composition rules,

computes the output based on interpolation and the distance concept. The imprecise informa

handling feature of this category of techniques is used to explain and handle uncertainty [85]. T

while techniques in this category combine the inputs based on the composition rules, and compute

output based on interpolation, the imprecise nature to handle uncertainty [85] makes the proces

of these techniques ambiguous, vague and black box in nature, thus they are unsuitable in term

explainability [86].

CC techniques combine the study and simulation of natural and artificial behaviour, which woul

observed in humans, be deemed creative by computational means [87]. Generally, these approa

collect hybrid models that provide a qualitative assessment of human imagination and creativit

an artificial way by applying complex methods and sophisticated techniques to extract features
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variations in the output that emerges from the same input data set [88]. However, most of the

algorithms apply vague and complex processing and need expert knowledge to handle and implem

the system [89].

ML and similar data mining algorithms are a subgroup of artificial intelligence that increase the pe

mance of a machine through experience [23]. Machine learning algorithms, also referred to as predi

analytics, build a model in order to make predictions or decisions based on training data. An ex

of machine learning is closely related to computational statistics, which focuses on making predict

using statistical learning [1]. This category of approaches commonly focuses on mathematical optim

tion, data mining, and exploratory data analysis through unsupervised learning [90]. This sub

of algorithms is the core of an artificial intelligence system and covers a wide range of applicat

from decision making to risk management, from small-scale conquer to large data manipulation

Conventional machine learning algorithms need long offline training and have a very poor abilit

relation to transferable learning, reusing systems and integration, in addition to being opaque w

makes them very hard to debug [92].

PMs are based on probability theory and predict future events based on current events or prev

history. PMs calculate a group of risk-related features from previous history as input after evalua

the features; and identify, reduce or optimize the corresponding risks. However, the limitations of

approaches are that they cannot detect the change of dimensions or features of the data set and

are not appropriate for dynamic system design [93]. As a result, PM approaches cannot detect

from a chain that is dynamic and change according to the occurrence of different events.

o overcome these gaps, supply chain risk managers should use techniques that assist them to unders

reasoning while reaching an output. Such improvement is a natural evolution of AI-based techniq

SCORM researchers should address the challenges that will assist them to achieve these aims. This

wide implications in corporate governance and decision making, and therefore is a subject that will

legal, social, and ethical implications. As explained in Section 1, in many industries, explainab

sidered to be a regulatory requirement [94] and SCORM researchers should incorporate it in

iques. In the next subsection, we explain the working of some of the XAI approaches in the litera

have been applied in different domains.

XAI approaches in the literature

esearchers have started to propose approaches that interpret the output of a model and meet

res. Broadly speaking, such approaches can be grouped into two primary models, namely explain

Jo
ur

na
l P

re
-p

ro
of
22



mode teps

that near

regre ostic

appro able

by ex only

used [97],

SHap 100].

Their

4.2.1

L ter-

preta tion

aroun at is

estim tion

and t the

local able

syste Tan

et al. f the

speci es of

uncer the

expla ome

of the sion.

An a sers

to un ated

the fi the

Tree- ally.

They st in

a tim

4.2.2

SH n to

mode pely

value ame

Journal Pre-proof
ls and interpretable models. Explainable models are those which apply functions/methods/ s

are glass-box and the operational steps of the methods can be explained such as decision tree, li

ssion and logistic regression [95]. On the other hand, interpretable methods introduce model-agn

aches or derive information from a black-box decision support system where the output is interpret

tracting knowledge about the underlying applications of the system [96]. Some of the most comm

interpretable methods in the literature are local interpretable model-agnostic explanations (LIME)

ley Additive exPlanations (SHAP) [98], contrastive explanation method (CEM) [99], and anchors [

working is explained in the next sub-sections.

. LIME

IME [97] describes the outcomes of any classifier by approximating it with a trustworthy local in

ble approach. Consequently, LIME produces local interpretations by confounding an individual por

d the input vector within a local boundary [101]. Each feature is incorporated with a weight th

ated by applying a similarity function that includes the gaps between the initial instance predic

he predicted sample points in the local decision boundary. Linear regression is applied to estimate

influence of each feature on the final decision. LIME has been widely used to design an interpret

m. For instance, Stiffer et al. [102] applied LIME to produce saliency maps of a specific region.

[103] used LIME to increase the performance of black-box representation, decrease the utility o

fications and detect the diverse sources in it. Their work explains the behaviour of three sourc

tainty: randomness in the sampling scheme, variety with sampling concurrence, and contrast in

ined pattern across diverse input points. An anchor [104] is an expansion of LIME that addresses s

drawbacks by maximizing the likelihood of how a specific characteristic might participate in a deci

nchor applies IF-THEN rules as explanations as well as the knowledge of coverage, which allows u

derstand the boundaries in which the produced explanations are valid. Li et al. [105] investig

delity and interpretability properties of local model-agnostic explainers LIME. They introduced

LIME, a modified method based on LIME that can effectively approximate the original model loc

represented the final output as a tree representation that explains the service supply chain foreca

e series.

. SHAP

AP is an interpretable approach that applies Shapley values [106] from a coalition game desig

rately allocate the earnings among players, where the participation of players is uneven [98]. Sha

s are a theory in economics and game theory. One can outline the theoretical concepts of this g
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tly to an XAI approach where each step is the prediction assignment for a unique occurrence and

rs are the feature preferences of the occurrence that cooperate to receive the gain. Strumbelj

nenko [107] showed that in a coalition game, it is generally considered that n players create a g

ion associated with a specific value. By default, it is known how much each smaller (subset) coal

have been worth, and the goal is to assign the value of the grand coalition among players equ

is, each player will receive a fair share, taking into account all sub-coalitions). Lundberg and

roposed an explanation using SHAP values and the differences between them to evaluate the gain

feature. In order to fairly allocate the payoff among players in a collaborative game, SHAP ap

airness criteria, namely additivity, where the sum of the values must total the final game outcome,

stency, where a player will not receive a reward which is lower than the contribution he/she m

e game. In terms of similar applications, Miller Janny Ariza-Garzon and Segovia-Vargas [108] uti

values and used the logistic regression method and specific machine learning algorithms to calcu

core using a credit scoring model in peer-to-peer (P2P) lending. Parsa et al. [109] noted that SH

offer an insightful interpretation to explain the prediction results. For example, one of the proced

e model, XGBoost, is not only able to estimate the global influence of features on the outcome, it

btain the complex and non-linear mutual influences of local features.

. Anchors

nchors describes individual predictions of any black-box classification model by observing a dec

hat adequately "anchors" the prediction [100]. A rule anchors a prediction if changes in other fea

s do not affect the prediction. Anchors uses reinforcement learning techniques combined with a g

h algorithm to minimize the number of model calls while overcoming local optima [110]. The an

ach uses a perturbation-based strategy to generate local explanations for predictions of black

ine learning models [111]. The resulting explanations are expressed as easily understandable IF-TH

called anchors. For this purpose, neighbours or perturbations are generated and evaluated for

nce to be explained. In this way, the approach can disregard the structure of the black box an

al parameters, allowing them to remain both unobserved and unchanged [112]. Thus, the algor

del-agnostic, i.e. it can be applied to any class of models. La et al. [113] proposed a model-agn

ique for XAI called cluster-aided space transformation for local explanation (CASTLE). The prop

l provides rule-based explanations based on the work of both the local and the global model,

tailed "knowledge" in the neighbourhood of the target instance and its general knowledge about

ing dataset, respectively. The framework was evaluated on six datasets in terms of temporal efficie

r quality and model significance. The measures of the central tendency of the results show that
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nation improves the understanding of the model, and that CASTLE slightly outperforms ancho

metrics and achieves an improvement in precision.

. CEM

ontrastive Explanation Method (CEM) is one of the XAI methods that can provide local explanat

black-box model [99]. CEM defines explanations for classification models by providing informa

t preferred and undesired features using pertinent positives (PP) and pertinent negatives (PN) [

nds the features necessary for the model to predict the same output class as the predicted class.

s similarly to anchors. PN finds the features that should be minimally and sufficiently absent i

nce while maintaining the original output class [115]. PN works similarly to counterfactuals [116

first method to declare what should be minimally present in the instance being declared and w

d be missing to preserve the original prediction class. The method detects the characteristics

d be sufficiently present to predict the same class as in the original instance and identifies a minima

tures sufficient to distinguish it from the other classes [117] [118]. Feature-wise perturbation mus

rmed in a meaningful way to create interpretable PPs and PNs. Using CEM, it is possible to imp

ccuracy of the machine learning model by considering instances of misclassified instances and

ssing them using the explanations provided by CEM [119]. Luss et al. [120] took a new approac

latent features to produce contrastive explanations. Predictions are described not only by highligh

ient aspects to justify the classification but also by adding new aspects that, when added, change

fication. The key contribution is the process of adding features to rich data in a formal yet hum

retable way. The process produces meaningful results generating local contrastive explanations

e intuitive explanations.

he contrastive explanations method applies monotonic attribute functions (CEM-MAF) to gene

astive explanations for images. PPs composed of two superpixels are able to identify examples w

lassifier requires little relevant information and therefore may not produce meaningful results.

supports this concept for visual explanations with only a few superpixels. The authors noted

might be the preferred form of explanation when it is not clear why a particular object is the w

t can be explained more clearly when contrasted with another very similar object. Amit et al.

sed a method that provides contrastive explanations that justify the classification of an input

-box classifier called a deep neural network based on object pixels and certain background pixels i

e. The authors validate the approach on three datasets drawn from different domains: a handwr

dataset (MNIST), a procurement fraud dataset, and a brain activity strength dataset. The explana

od called CEM finds what should be minimally present in the input to justify classification by black
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fiers and finds contrastive perturbation additions that should be missing to justify classification.

NIST dataset of handwritten digits, the approach provides examples of explanations with and wit

ncoders. The handwritten digits are analysed using a feed-forward convolutional neural network (C

ed on training images from the MNIST benchmark dataset. The results from CEM, LRP and LIME

ared with the MNIST dataset to justify the classifications. Similarly, pre-processed fMRI connect

from the resting brain state and a real procurement dataset from a large company were used as inpu

in the neural networks. The approach describes what is minimally sufficient in the input to justif

fication and what should be minimally and critically absent in the classification. It also distingu

m another input that is "closest" to it but would be classified differently. The extraction of perti

ive and negative aspects by CEM can reduce errors (false positives and false negatives) in such diagn

. XAI in enterprise-level applications

AI approaches are increasingly being used for commercial purposes. For example, the DataR

rm works on different data sets to automate machine learning and AI applications at an enter

The platform includes a model blueprint that shows the pre-processing steps of each model to d

nclusions. It also supports interpretable models. Different enterprises have applied DataRobot in

ings. For example, United Airlines applied it to predict which customers are most likely to buy g

in bags [122]. With a billion users on its platform, the Google Cloud service added an explainabl

e that evaluates algorithmic models throughout the product lifecycle [123]. It is integrated with Jup

olab notebooks and comes pre-installed on AI Platform Notebooks Tensorflow. H2O Driverless A

er example of a commercial application that applies XAI during model validation, tuning, selec

eployment [124]. H2O Driverless AI offers machine learning interpretability (MLI) as a core fea

erings include Shapely (which shows how features directly affect the unique prediction of each l

ME (which can generate reason codes and English language explanations for more complex mod

gate decision trees (which provide a flowchart showing how a model makes decisions based on

al features), and partial dependence plots (which shows the average model predictions and stan

tions for the values of the original features). Watson OpenScale has several model checking feature

[125]. The application provides contrastive explanations for any classification models. In other wo

plays relevant positives and relevant negatives, both of which help explain the behaviour of each mo

cloud computing service Microsoft Azure allows users to build, test, deploy, and manage applicat

It provides various programming languages, frameworks, and tools inside and outside the Micro

stem. Azure’s model interpretability provides nine explanation techniques to choose from. This ena

xplanation to be matched to the technique used to train the model. For example, if deep learnin
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the SHAP Deep Explainer provides an explanation of how an output has been reached.

Directions for future research to incorporate XAI in SCORM approaches

hile XAI approaches assist in explaining the output of a ML model, from the perspective of explai

utput for better SCORM, future work in the following areas needs to be done:

Capturing the interdependence among the different features that will impact on the risk class. I

inter-dependent networked environment such as supply chains, many features or factors may resu

the eventuation of a risk event. For informed risk management and to incorporate interpretabili

key requirement is to represent how a feature has contributed to the output and show which o

feature/s resulted in this feature in question leading to the risk event. In other words, there

need to (a) determine the interdependence among different features, and (b) show how the inte

pendence has evolved over the previous time periods. In SCORM, this will have a significant im

in determining the correct cause/s of a disruption event for which a risk management plan need

be made. Existing AI or XAI approaches fail to represent such inter-dependability among feat

and thus cannot represent the analysis as a chain across the past time periods. Future research w

needs to address these gaps by using techniques such as knowledge graphs that assist in capturing

dependencies among the different features and over a time period. By representing knowledge in

form of an ontology, knowledge graphs assist in determining how a feature is linked or dependen

other features. This also assists in inferring knowledge on an unknown feature from the features

are linked to it. Kosasih et al. [127] proposed an approach along these lines that attempts to imp

visibility in supply chains. The authors utilize graph neural networks (GNNs) that identify the hid

links between the different nodes. However, the utilized techniques are black box in their wor

nature and only commit to the interpretability factor of XAI. Further research needs to be done

attempts to incorporate other features of XAI, as discussed in Section 2.1.

Identifying the impact of the external factor/s which may influence the output of a risk event. Su

chains are open-loop systems in which external circumstances may have implications on their op

tions. Thus, if disruptions arising from these have to be managed, the XAI model should capture

occurrence of such events and then determine their impact on the eventuation of the risk event. E

ing XAI models fail in capturing the occurrence of external events and thus only deal with closed-

systems that are not impacted by external events. This gap needs to be addressed to apply XA

the risk Management of open-loop systems. Existing research has developed techniques which con

how external events impact on a criterion of a Service Level Agreement (SLA) [128]. However,

impacts need to be mapped down from an SLA criterion to its responsible features. This knowledge
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then be used to propagate information to the inter-dependent features to appropriately determin

impact. To achieve this aim, researchers should consider techniques such as complex event proces

(CEP) which extracts meaningful information from event streams and maps it to the SLA criterio

which it relates. The relationship between the different features and an SLA criterion then need

be mapped and joined with compositors such as All, OneorMore and ExactlyOne. These compos

assist in appropriately translating the knowledge determined for a criterion to its dependent feat

Future research work needs to done to determine how this information can then be used in knowl

graphs to see how its propagates further and results in the output given by the AI technique.

Representing the output according to the requirements of the risk manager to explain the interpretab

of the model. Personalised risk supervision is the step of risk management in which the determ

output is visualised and explained to the risk manager based on their requirements and demands [

This requires modelling the mental model of the risk manager [130] and then representing why

shown output is occurring based on that mental model. Existing XAI models are unable to do

and thus have a one-dimensional representation of the output. Future research work should loo

addressing this drawback if the aim is for the results to be interpretable by risk managers from diffe

viewpoints.

Integrating different techniques to better capture the inter- dependency between features. Researc

should look at the hybridisation of different interdisciplinary techniques that attempt to integrate

working of each to intelligently manage supply chain risks [131]. Hybridisation allows the integra

of multiple algorithms in a single methodology and opens the scope to achieve a unique output w

is not possible from using a single approach. For example, transfer learning is a machine lear

approach which has been widely used in the literature. It aims to transfer knowledge from one dom

to another, for which no data exist [132]. This technique can be integrated with the use of a knowl

graph to either determine the value of the features for which no data exist or use information abo

feature from one knowledge graph to determine its value in another setting. Similarly, can be the

with having a hybridisation of different techniques.

elieve that these are some of the directions for future work to incorporate and improve XAI in SCO

mphasize that the above directions are not exhaustive and with a change in domain other than SCO

advancements too can be incorporated to improve the explainability of a recommended output.Jo
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imitation of this study

here are two limitations to this research article. The first, as mentioned in Section 2.2, is that the s

r analysis in this paper is SCORM. This does not imply that we analysed all the AI techniques tha

for risk management in supply chains. Supply chain management (SCM) consists of different activ

as inventory management, warehousing, facility location, transportation, etc. Furthermore, risk

y chains are of different types, such as performance risks, quality risks etc. So, for a complete ana

different AI techniques used in SCM and the management of the different risks, a deep analysis of o

es needs to be conducted. Some of these articles relate to the following areas: inventory managem

eplenishment [133] [134] [135], supplier selection [136], transportation [137], manufacturing [138], su

design [139] [140] etc. It is important to note that this list is not exhaustive and researchers should

ctured approach to define the search query as we did, as detailed in Section 2.2. The second limita

s paper is that although we pursued the SLR approach, it is still feasible that some papers were mi

ver, it seems likely that this might be a small set of papers which would not alter the conclusions

ecommendations.

onclusion

this paper, we highlighted a shortcoming of the existing AI approaches for SCORM in terms of

of explainability. We emphasised that supply chain researchers should explore this potential o

iques in realising proactive, predictive and real-time SCORM. Researchers should move from usi

-box-based technique to a more sophisticated, trustworthy and explainable technique that will a

king auditable SCORM decisions. Using such techniques, SCORM researchers can monitor the fu

ds with accuracy and gain confidence to enhance strategic plans in an explainable way. In our fu

, we intend to develop techniques that utilise hybridisation and attempt to achieve the features of

SCORM. Our analysis is closely connected to the supply and accessibility of relevant studies.
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