

DoD Program Protection

Kristen J. Baldwin
Principal Deputy
Office of the Deputy Assistant Secretary of Defense for Systems Engineering, OUSD(AT&L)

NDIA Program Protection Summit / Workshop Mclean, VA | May 20, 2014

Many Supply Chain Risks to Consider

Quality Escape

Product
defect/inadequacy
introduced either
through mistake or
negligence during
design, production,
and postproduction
handling resulting
in the introduction
of deficiencies,
vulnerabilities, and
degraded life-cycle
performance

Reliability Failure

Mission failure in the field due to environmental factors unique to military and aerospace environment factors such as particle strikes, device aging, hotspots, electromagnetic pulse, etc.

Fraudulent Product

Counterfeit and other than genuine and new devices from the legally authorized source including relabeled, recycled, cloned, defective, out-of-spec, etc.

Malicious Insertion

The intentional insertion of malicious hard/soft coding, or defect to enable physical attacks or cause mission failure; includes logic bombs, Trojan 'kill switches' and backdoors for unauthorized control and access to logic and data

Anti-Tamper

Unauthorized
extraction of
sensitive
intellectual
property using
reverse
engineering, side
channel scanning,
runtime security
analysis,
embedded system
security weakness,
etc.

Emerging Threats

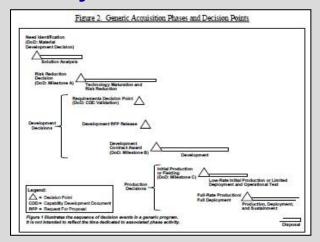
New threats, cyber security attacks, and trust issues that combine two or more threats

DoD Program Protection focuses on risks posed by malicious actors

Malicious Supply Chain Risk

Threat:

 Nation-state, terrorist, criminal, or rogue developer who gain control of systems through supply chain opportunities, exploit vulnerabilities remotely, and/or degrade system behavior


Vulnerabilities:

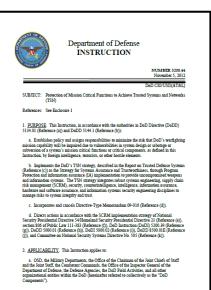
- All systems, networks, and applications
- Intentionally implanted logic
- Unintentional vulnerabilities maliciously exploited (e.g., poor quality or fragile code)

Consequences:

- Loss of critical data and technology
- System corruption
- Loss of confidence in critical warfighting capability; mission impact

Access points are throughout the lifecycle...

...and across multiple supply chain entry points


- Government
- Prime, subcontractors
- Vendors, commercial parts manufacturers
- 3rd party test/certification activities

DoD Trusted Systems and Networks Strategy and Policy

Promulgated in DoDI 5200.44, requiring:

- Risk management of mission-critical function and component compromise throughout lifecycle of key systems by utilizing
 - Criticality Analysis as the systems engineering process for risk identification
 - Countermeasures, including supply chain risk management, software and hardware assurance, secure design patterns
 - Testing and Evaluation, to detect HW/SW vulnerabilities
 - Intelligence analysis to supplier acquisition strategies
- DoD-unique application-specific integrated circuits (ASICs) must be procured from trusted certified suppliers
- Plans and mitigations documented in program protection and information assurance activities

Program Protection Interim DoDI 5000.02

- Program Protection is the integrating process for managing risks to DoD warfighting capability from foreign intelligence collection; from hardware, software, and cyber vulnerability or supply chain exploitation; and from battlefield loss throughout the system life cycle.
 - Also supports international partnership building and cooperative opportunities objectives by enabling the export of capabilities without compromising underlying U.S. technology advantages
- Program managers will employ system security engineering practices and prepare a PPP to guide their efforts and the actions of others to manage the risks to critical program information and mission-critical functions and components associated with the program
 - The PPP will be submitted for MDA approval at each Milestone review, beginning with Milestone A
- Program managers will describe in their PPP:
 - Critical Program Information, mission-critical functions, and critical components
 - Threats to and vulnerabilities of these items
 - Plans to apply countermeasures to mitigate associated risks
 - Plans for exportability and potential foreign involvement
 - The Cybersecurity Strategy and Anti-Tamper plan are included as appendices

PPP Methodology

Criticality Analysis

- Based upon mission threads, determine system critical components
- Analyze component vulnerability to malicious exploit
- Identify potential component suppliers

Supplier Threat Assessment

 DIA Conducts All-source Analysis and submits Threat Report to Component Focal Point

Countermeasures

 Determine countermeasures to address vulnerabilities: OPSEC, trusted suppliers, system security engineering, hardware/software assurance

Program Protection Plan

- Engineering risk/cost tradeoff analysis to determine system security requirements
- Acquisition strategy mitigations for supplier threat (e.g. blind buy, trusted source)
- Evaluate mitigations over time with intel, engineering, and test; update PPP at major milestones

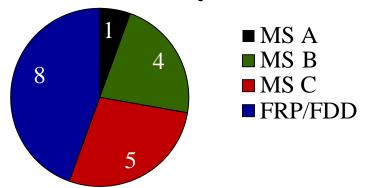
Contractor

- RFP includes Supply Chain and security requirements
- Design reviews continually assess security risk

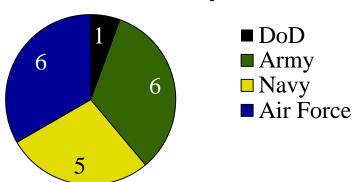
Test & Evaluation

- HW/SW vulnerability detection
- Contractor, DT, OT assessment of mitigations

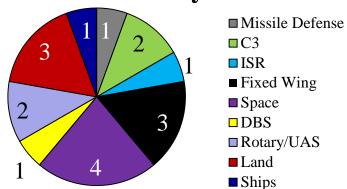
Program Protection Activity - Integral Part of SE Process



PPP Approval Statistics ACAT ID/IAM



47 PPPs Approved	
FY 2010	4
FY 2011	7
FY 2012	5
FY 2013	18
FY 2014 (to date)	13



FY13 PPPs by Service

FY13 PPPs by Domain

Program Protection Outline and Guidance signed July 18, 2011

Security Engineering Challenges

- Incorporation of security engineering as a discipline of systems engineering
 - Engineering methodology, processes, and practices
 - System security engineering workforce
- Quantification of security risks
 - Vulnerability detection, and validated mitigation
- Articulation of security requirements
 - Threat-driven, evolving over time
 - Risk-based affordable trade off analysis; Measurable, testable system specifications
- Protection of technical data
 - Consequences of unclassified controlled technical information losses
 - Government and Industry mitigation of supply chain exploitation

Major Actions Underway

- Updating Program Protection guidance and training
 - Establishing a discipline for system security engineering
- Implementing DFARS Clause 252.204-7012, "Safeguarding Unclassified Controlled Technical Information"
 - Working with industry and contracting community
 - Providing guidance, working through procedures
- Joint Federated Assurance Center for HW/SW
 - Required by Section 937 of FY14 NDAA
 - Provides network of vulnerability analysis detection and mitigation support to programs; and R&D improvement (resource limited)
- Trusted microelectronics strategy to move beyond ASICs
 - FPGAs, Microprocessors, Logic Application Specific Standard Products, Memories, A-D Converters, Interface Chips
- Anti-Tamper Policy and Guidance updates
 - DoD Instruction for AT, AT Technology oversight, guidance updates

System Security Engineering

- Industry plays an important role:
 - Integrating SSE into SE methods, processes and tools
 - Investing in research, tools, and processes to protect systems and supply chains
 - Developing flexible security architectures for designed-in protections
 - Developing and applying SE and SSE skills (anti-tamper, cybersecurity, supply chain, software assurance, ...)
 - Developing SSE metrics
- Together we can begin to address the challenges and move toward a shared goal of delivering trusted systems

Thank you to our hosts and attendees for supporting this Program Protection Summit and Workshop

Questions