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1 PURPOSE	AND	SCOPE	
The purpose and scope of this document is to provide guidance to CCSDS missions for 
implementing secure software development throughout the Software Design Life Cycle. The scope 

focuses on space systems and spans the acquisition lifecycle from early requirements definition to 
sustainment and maintenance. This document is comprised of industry best practices, subject 

matter expertise based on experience with space programs. It contains procedures, processes, 
guidelines, and design strategies for developing secure code, systems, and projects. This report 

includes recommendations for practices mission owners should adopt. 

2 INTENDED	AUDIENCE/APPLICABILITY	
The recommended audience is software developers, software project managers, and software 

assurance (SwA) professionals. The authors assume knowledge and experience writing space 
mission software and knowledge of software design patterns, general software design principles, 

resource management such as memory, files, and threats, and development processes such as 
Development Operations (DevOps). One purpose of this document is to familiarize the audience 

with security issues that arise in software development; therefore, the audience does not need 
extensive experience with software security but knowledge of basic security issues that arise in 

software systems such as buffer overflows would be helpful.  
 

The applicability is to ground system software developers as well as flight software developers as 
software plays a key role in mission essential functions across all segments as depicted below. 

 
FIGURE 1: COMPONENT OF A SPACE SYSTEM 

 
 
 

Components of A Space System

Ground Segment 
Operations & Support

Link Segment 
Ground-to-space communications, 

including user devices such as GPS, 
handhelds, small radio ground stations

Space Segment 
Earth-orbit satellites, planetary 

probes, deep space 

SPD-51 defines “Space System” as 
“a combination of systems, to include 
ground systems, sensor networks, 
and one or more space vehicles, that 
provides a space-based service.” 

As defined in, Memorandum on Space Policy Directive – 5 Cybersecurity Principles for Space Systems, Sep 2020

Software plays 
key role in many 
mission essential 
functions across 

all segments!
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3 WHY	PERFORM	SECURE	SOFTWARE	DEVELOPMENT	
Software is a significant risk that requires oversight, investment, secure software development 
practices and assurance by developers and/or third-party entities. In traditional systems, it is 

estimated that approximately 80% of system functionality is or will soon be provided through 
software. Space systems are no different as the lines of code performing mission critical 

functionality has expanded exponentially over the past 30 years.  In traditional systems, 80-90% 
of breaches come from weaknesses in the software with about half of the software weaknesses 

being attributed to architectural security flaws.  
Security issues are often too difficult to find with 

the human eye, especially in the architecture. 
Nearly 90% of software flaws are introduced in 

software design & development which requires 
action from management and development 

organizations alike.  Investment is needed but 
there is a return on the software security 

investment. 60% of software flaws are not found 
until later in integration and system test  

requiring up to 25 hours to fix per issue vs 15 
minutes during development. There is a need to 

shift the discovery of any defect, including 
security to the left to prevent mission impact and 

cost to mitigate.  
 

An example of why secure software development principles is extremely important can be 
explained when discussing the flight software for a mission. An integral component of the 

Command and Data Handling (C&DH) system development is the flight software (FSW), usually 
written in C/C++. It is often structured as a state machine, controlling the transitioning of the 

spacecraft between its operational modes that define its actions and behavior. C/C++ is widely 
used in the development of software for embedded systems, even mission-critical and hard-real-

time systems. C++ (as well as C), by its design, may not be as suitable language as once thought 
for writing high integrity or mission-critical software. C++ gives a programmer a great deal of 

freedom. With freedom comes responsibility, though, and, in the case of C++, a whole lot of 
responsibility. Nevertheless, when used properly there are good reasons for using C++ in a 

mission-critical system like a spacecraft. When using C++ for mission-critical systems, attention 
must be paid to avoid any language constructs and code that can potentially lead to unintended 
program behavior. Coding standards that limit language features to a safe subset that can be used 

are critical as well as including tools for automatic validation of these standards. (Obiltschnig, n.d.) 
Open-source software vulnerabilities can be used as an indicator on the prevalence of 

vulnerabilities within software which indicates C/C++ has the most vulnerabilities per language in 
the past 10 year. (WhiteSource, n.d.) The point of this metric is to communicate that FSW is 

typically written in languages that have a history of vulnerabilities specifically with input 
sanitization and buffer conditions (i.e., CWE-20, CWE-119).  

 
 

 
 

FIGURE 2: BAKE SECURITY IN EARLY 
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FIGURE 3: OPEN-SOURCE VULNERABILITY BY LANGUAGE (2009-2018) (WHITESOURCE, N.D.) 

 
 

The goal is to start as early as possible with secure software development and any third-party SwA 

activities. Start small, start early & leverage security minded developers and SwA experts across 
the lifecycle. Various aspects of below will be described in subsequent sections. 

 
FIGURE 4: SOFTWARE SECURITY ACROSS THE LIFECYCLE 

 
 

 

4 	ARCHITECTURE	METHODS	TO	PROMOTE	INSIGHT	INTO	SECURITY	
4.1 OVERVIEW 	
Because Software Architecture principles and practice is a broad topic, the discussion in this 
section to architectural principles with an emphasis on promoting reliability and security.  It 

touches on architectural practices that enable shared understanding of architectural decisions and 
the identification of risks.  For more information on these and other architectural principles and 

practices see, Software Architecture in Practice (Bass & Clements, 2003). 

1.  Planning              2.  Design & Development    3.  Independent Testing     4.  Fielding or Legacy
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• Requirements
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• Program Protection Plan
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• Threat Modeling
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• Architectural and Static 

Analysis & Reporting
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SW Updates
• Interim Independent SwA 

Testing & Risk Scoring
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Decision Support
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• Secure the Operational 
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• Secure Monitoring
• Incident Response 
• Legacy: Test to find 
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4.2 	ARCHITECTURE	REQUIREMENTS: 	QUALITY	ATTRIBUTES 	
When considering architectural decision making, it requires visionary future proofing especially 
when architecting for threats and vulnerabilities that are yet to be known. The visionary architect 

will need to anticipate and balance the long-term needs, while simultaneously providing short-
term guidance that enables the production of working software.  The truth of the matter is that this 

visionary architect’s job is made possible based on the understanding that the functionality of any 
given system and its quality attributes are orthogonal to each other.   

 
While this statement may run counter to what we believe about architectural decision making; 

consider how one might allocate functionality to optimize performance or how the system should 
respond to faults, failures, or malicious insiders?  Often these questions go unanswered until 

problems arise (i.e., operating system patch that exposes a race condition, user error that leads to 
mission failure, etc.).    

 
This where quality attributes come into play.  For any given system to maintain utility it is designed 

to balance systemic attributes, or quality attributes, based on their relative priority to all 
stakeholders – it is not enough to design a system to promote code modifiability (the first instinct 

of any developer) without balancing security, performance, testability, or usability.  For any given 
system, the balance of quality attributes exists in tension with each other – when portability is 

highly optimized (e.g., software language, compiler, operating system, database, and hardware 
specific dependencies are isolated), portability can be achieved at the cost of performance.  When 

the architect balances these two quality attribute concerns (e.g., address risk of database vendor 
lock by isolating vendor specific functions in database functions), performance and portability 

goals can be achieved. 

4.3 SPECIFYING	QUALITY	ATTRIBUTE	REQUIREMENTS 	
Achieving a balance of quality attributes first requires that the primary driving quality attributes 

be identified, prioritized, and fully characterized.  Once characterized, the architect can select the 
specific architectural principles that best promote and inhibit the desired architectural qualities.   

The most effective method for specifying quality attributes, suitable for both architectural 
reasoning and technical driver prioritization is through the use of Quality Attribute Scenario 
Descriptions (Bass & Clements, 2003).    
FIGURE 5: QUALITY ATTRIBUTE PARTS 
 

Quality attribute scenario description represents a quality attribute requirement and is made up into 
six parts.  They are: 
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1. Source of Stimulus:  An entity that generates a stimulus.  This may be user of the system, 
other systems or subsystem that are either internal or external to this system, time, or 

hardware (e.g., actuator or sensor). 
2. Stimulus:  The condition, trigger, or event that occurs and is under consideration 

3. Environment:  The conditions under which the stimulus can occur.  This may include 
quiescent conditions, heavy load, start-up, shutdown 

4. Artifact:  The part of the system that is stimulated by the stimulus.  
5. Response:  The expected activity assumed after the stimulus arrives. 

6. Response Measure:  The quantifiable performance of the response. 
Extending this concept into the security domain, consider the insider threat attack scenario where 

the source stimulus is an authorized user of the software. This is a good example where quality 
and security overlap. Some may call this quality attribute exercise threat modeling which is a very 

common practice during early stages of architectural design. 
 

Example #1:  Insider Threat Scenario.  Consider an attack scenario whereby a correctly 
identified and authorized user of a given system modifies mission initialization data.  In this case, 

the expected response of the system is to be able roll-back configuration settings for up to two 
days.  

 
For this scenario, the quality attribute parts are: 
TABLE 1 ATTRIBUTE SCENARIO DESCRIPTION EXAMPLE 1 
Quality Attribute Step Description 
Source of Stimulus Authorized User 

Stimulus Modifies system configuration 

Artifact System Datastore or database 

Environment Steady State (normal Ops) 

Response  System records state prior to changes and can 
restore previous configuration settings 

Response Measure System can restore previous state for up to 48 

hours. 

 

Example #2:  System Availability Scenario.  Consider system availability scenario whereby 
one or more parts of the system lose network connectivity or has a loss of power.  In this case, 

the expected response of the system is to notify operational users, of outage, timeline for outage 
notification is 6 seconds.   



 
 

6 
 

For this scenario, the quality attribute parts are: 
TABLE 2 ATTRIBUTE SCENARIO DESCRIPTION EXAMPLE 2 
Quality Attribute Step Description 
Source of Stimulus Network Switch 

Stimulus Loss of network traffic 

Artifact Networked subsystems 

Environment Steady State (normal Ops) 

Response  User Interface provides a visible indicator of 
outage and outage information.  

Response Measure Notification occurs within 6 seconds of 
detected outage. 

 
Note that in both scenario description examples, neither specify any specific technical solutions 

(e.g., rollback, or heartbeat) in response to the stimuli, rather, what the expected response of the 
system should be. As simple as these scenarios are, oftentimes quality attribute requirements 

related to security and availability are oftentimes unarticulated, or wrongly assumed to be captured 
under “non-functional” requirements.  Articulating quality attribute scenarios into the six-part 

descriptions enable the architect, developers, and involved business stakeholders to characterize 
the appropriate response and response measures to enable the prioritization of quality attributes 

relative to each other – and the selection of the most appropriate architectural tactics to employ.  

4.4 ARCHITECTURE	TACTICS	 	
Architecture represents the individual pieces in a large puzzle, when combined with the allocation 

of responsibility (functional allocation) they make up an overall software architecture.  The total 
collection of applied tactics is often referred to as the architecture strategy, as it represents the 

explicit design choices that are traced to specific quality attribute scenarios (Bass & Clements, 
2003).  When we consider each quality attribute scenario individually, applying one or more 

architecture tactics may be necessary in order to achieve the desired (or acceptable) response in 
light of competing architectural drivers.   

4.4.1  ARCHITECTURE	TACTICS : 	PROMOTING	SECURITY	AND	RELIABILITY	 	
WHEN WE CONSIDER SECURITY TACTICS (SHOWN IN  
Figure 6), they are in response to attacks. The often-expected response to an attack is to resist but 
it may be more appropriate to detect and recover in some cases.  
 
FIGURE 6: SUMMARY SECURITY TACTICS (BASS & CLEMENTS, 2003) 
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4.4.1.1 TACTICS	FOR	DETECTING	ATTACKS 	
The classic “man-in-the-middle” class of attacks involve insertion of a third party into a 
communications channel, allowing messages to be intercepted, captured, and/or manipulated 

before forwarding them on to their destination. These kinds of attacks prey upon the assumption 
that once a secure, encrypted connection has been established between two endpoints, 

communication over that channel can be implicitly trusted. Tactics to detect these types of attacks 
include Data Integrity Detection and Anomaly Detection.   
Data Integrity Detection.  Verification of message integrity and detection of message delay are 
two methods of detecting these types of attacks. Verification consists of comparing the data that 

were initially transmitted with the data that are received. At the implementation level this is done 
using cryptographic signatures. The originator signs the payload of the original message, and that 

signature is verified by the receiver. If the signature is not valid based on the sender’s public key, 
it is an indication that the data was somehow tampered with in transit.   
Anomaly Detection.  In cases where there is compromised hardware or software, the persistent 
threat may be exfiltration of credentials and/or data.  In such cases, tactics to characterize nominal 

and off-nominal payload sizes and frequency may be used to trigger notifications.  

4.4.1.2 TACTICS	TO	PROMOTE	ATTACK	RESISTANCE 	
The common denominator in many attacks is a form of privilege escalation, in which the attacker 
gains access to data or other resources without appropriate authorization. This can range from 

reading protected rows in a database to sending unauthorized commands to Space Vehicle (SV) 
thrusters, or worse. While no software component can be made completely impenetrable to attack, 

especially in cases where hardware is compromised, the tactic of “least privilege” can mitigate the 
impact of attacks.  Least privilege combines three architectural tactics:  Authenticate Users, 

Authorize Users, and Limit Access to any given system.  Each of these tactics are separate from 
each other and when employed together and combined with Data Integrity Detection they 

establish an integrated attack resistance to attacks, capable of detecting and resisting attacks from 
compromised components within the system. 

 

Security

Attack

Resisting 
Attacks

Detecting 
Attacks

Recovering
from an Attack

• Authenticate Users
• Authorize Users
• Maintain/Monitor 

data integrity
• Maintain/monitor 

data confidentiality
• Limit Access
• Limit Exposure

• Intrusion 
Detection

Restoration Identification

• Audit TrailSee Availability

Resistance
Detection
Recovery
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When these tactics are combined, such that software functions are only granted access to the 

resources required to accomplish its task, access to critical system components is 
compartmentalized. This makes the attacker’s task significantly more difficult than dealing with a 

target that has been hardened using orthogonal resistance tactics. 
Keeping in mind that some resistance tactics may incur additional overhead that may limit system 

utility, careful selection and application of combined tactics are recommended to assure a balance 
of concerns. 

4.4.1.3 TACTICS	TO	PROMOTE	ATTACK	RECOVERY 	
In the aftermath of an attack that involves compromised hardware or software, there is a lingering 

question: How can we ensure the attack vector has been eliminated? In many cases, replacing the 
hardware with a known good alternative is simply not an option. Replacing software may be more 

feasible but is still likely to require significant time and effort. Until it can be deployed, the 
vulnerability remains. 

 
An architectural tactic that can address this concern is voting. Voting requires multiple separate 

instances (and sometimes independent implementations) of the software component to operate in 
parallel. In the ideal case, these instances would run on heterogeneous hardware. Before carrying 

out an action that could impact the system’s ability to perform its core functions, all of the instances 
must be polled and reach a consensus. If one of the instances is compromised, it will be “outvoted” 

by the non-compromised instances, preventing the malicious behavior from occurring. 

4.4.2  TACTICS	TO	PROMOTE	AVAILABILITY 	
When we consider availability tactics (shown in Figure 7), they are in response to one or more 

faults in the system.  The often-expected response to a fault may be to recover and repair, but it 
may also be to detect and report faults.  When considering a particular architectural tactic to 

promote availability, one must first start with a fault, then determine which explicit response tactics 
most appropriately promote availability. 
FIGURE 7: SUMMARY AVAILABILITY RESPONSE TACTICS (BASS & CLEMENTS, 2003) 
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4.4.2.1 TACTICS	TO	PROMOTE	FAULT	PREVENTION 	
The stereotypical image of an attacker is someone who infiltrates and subverts a system to serve 
their own ends. However, it is much simpler for an attacker to merely disrupt a system’s operation, 

making it unable to carry out its mission. This can be accomplished by overloading any limited 
resource, including memory, processing power, network I/O, or storage. To guard against these 

types of attacks, an architecture can be designed to identify them and pre-emptively remove the 
targeted component from service in a controlled manner. This kind of proactive response leaves 

the defender in control, rather than the attacker. For example, if an attacker attempts to overload a 
system by sending a huge volume of counterfeit requests, the communication channel can be 

closed or throttled until the attack subsides. An attempt to exploit memory leaks can be mitigated 
by rebooting the system before out-of-memory errors occur.  

4.4.3  TACTICS	TO	PROMOTE	MODIFIABILITY : 	 	L IMITING	SECURITY	ISSUE	R IPPLE	
EFFECTS	 	

When we consider modifiability tactics (i.e., compromised software or hardware components), 

they are in response to changes that need to occur, whether they be in the implementation or while 
the system is running.  The often default response to a change is to modify the underlying source 

code and rebuild/redeploy the system software.  When considering a particular architectural tactic 
to promote modifiability (i.e., to address one or more issues associated with a compromised part 

of the system), there are a variety of architectural tactics that may be employed to reduce exposure 
to risk when known vulnerabilities are identified.  

  

4.4.3.1 PREVENT	RIPPLE	EFFECTS 	
Preventing ripple effects refers to tactics that seek to limit the amount of software that will have 
to be modified or replaced when a compromised component is identified. Here, we address two 

tactics in particular: information hiding and restricting communication paths. 
Simply put, information hiding it means that the internal state of a software component is kept 

private, exposing only those data and interfaces required to enable it to accomplish its function 
within the system. Coupling occurs when the operation of one software component is directly 

dependent upon the internal data structures or implementation details of another component, rather 
than interacting with it through its public interface. Replacing or modifying a compromised 

component that is loosely coupled to other components is far less difficult and risky than replacing 
one which is tightly coupled. 

Restricting communication paths means that each software component interacts with the minimum 
number of other components required to accomplish its function. More interactions with other 

software components mean more execution paths that are likely to break when a compromised 
component is replaced or modified. Thus, while information hiding is a tactic that limits the depth 

of coupling between components, restricting communication paths is a tactic that limits the breadth 
of that coupling.  

4.4.3.2 RUNTIME	BINDING 	
Runtime binding is a family of tactics that seeks to reduce the effort required to deploy new or 

modified software in order to address a compromised component. Every system requires some 
level of configuration to run in its intended environment. These configuration choices can be made 
anywhere from the lowest level to the highest level. Enabling runtime binding entails architecting 
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the system such that these configuration choices are made at the highest possible level – i.e., as 
late as possible. While any form of runtime binding may incur a performance impact during the 

binding process, this cost can be recouped many times over when it becomes necessary to modify 
or replace a system component.  This affords the ability to re-deploy parts rather than the entire 

system. 
 

Runtime discovery involves dynamic tracking of system components while the system is 
operational. More specifically, resources can be added or removed without disrupting the system’s 

overall operation. A failed component can be restarted, or a compromised component can be 
removed and replaced without bringing down the rest of the system. This kind of flexibility is 

extremely powerful but requires careful consideration of all the possible corner cases. Each 
component must be able to properly and cleanly handle the sudden disappearance of a component 

with which it is interacting. Otherwise, a single failed or removed component can cause all related 
components to fail or lock up, potentially kicking off a cascade effect that renders the entire system 

inoperable. 

5 SECURE	CODING	REQUIREMENTS	
Secure coding requirements should incentivize developers to create reliable, secure systems via 

several means. Coding processes that include security encourage developers to write secure code 
and help them find and fix security issues quickly. A thorough set of coding guidelines helps 

developers avoid common mistakes. Commercial, free and open source, and re-use code enables 
fast development, but system owners must consider security implications of using code written by 

another entity.  
 

The choice of platforms and devices is often a system engineering decision, but security should be 
part of this decision. When choosing what platforms or devices to use, it is important to analyze 

what security issues may be involved with using these technologies. For example, languages such 
as Java that handle memory allocation reduce the risk of a large class of problems in languages 

such as C++, but there may be performance considerations. Additionally, as described in The 
Challenge of Using C in Safety-Critical Applications (Newton & Aschbacher, 2018), C also has 

very permissive semantics which can make it dangerous. Language selection and secure coding 
guidelines are critical component of secure software development. Also, all hardware devices and 

vendors should be scrutinized for security vulnerabilities using resources such as the National 
Vulnerability Database. (National Vulnerability Database, n.d.) The development team must create 

coding guidelines tailored to the hardware platform and language of choice. 
 

Security features, especially cryptography, should be included from a trustworthy source rather 
than implemented from scratch wherever possible. Attempting to implement these features can be 

problematic, especially since there are many subtleties that, if left ignored, can lead to 
vulnerabilities; hence, if a proper solution has already been made by a group compliant with 

required standards, it is advantageous to use those instead of creating an implementation from 
scratch. For instance, the FIPS-compliant OpenSSL library has several cryptography functions that 

have been implemented to avoid issues such as timing and padding vulnerabilities. Authentication 
and access control mechanisms built-in to operating systems have been extensively tested and are 

likely to be more secure than custom implementations. 



 
 

11 
 

 
Development teams should include cyber security members starting from early concept 

development. Security considerations often drive the system design. For example, network defense 
in depth includes protections such as firewalls and intrusion detection that should be included in 

the network design at an early stage. As another example, strong authentication and access control 
will likely have major consequences for how software components interact. Adding these features 

late in development will be costly versus including the features in the design at an early stage. 
 

Here is a non-exhaustive list of secure coding requirements that programs should implement: 

• System engineers should choose platform, choice of language, and devices with security 

as a consideration. Vendors and products should be evaluated for security issues. 

• Software Supply Chain Risk Management 

• Developers should follow a secure coding guideline that describes best practices for writing 
secure code and explains security issues and how to avoid them. 

• Software Bill of Materials generation and cross referencing to known adversary actions 
and known vulnerabilities (i.e., CVEs) 

• Secure Code Guidelines  

• Mission systems (e.g., Linux, Windows) should follow an accepted set of security controls 
and hardening. For example, CIS benchmarks, NIST 800-53, or Defense Information 

System Agency’s (DISA) Security Technical Implementation Guides (STIGs). For 
software development specifically, DISA publishes an Application Security and 

Development STIG. MITRE also publishes Common Weaknesses Enumerations (CWEs) 
which can be used as a method for ensuring code is free of vulnerabilities 

• Security engineers should scan commercial, open source, or re-use software with a security 
tool or security issues should be mitigated via mechanisms such as sandboxing. 

• Developers should use trustworthy sources for security feature implementations, 
particularly cryptography, rather than relying on custom implementations. 

• Developers should develop a prioritized list of CWEs / weakness types in which the 
mission wants to ensure are not within the source code 

• Developers should regularly scan software with a tool or tools that provide coverage of 
desired security weaknesses. 

• Developers should use dynamic testing which helps find issues such as memory and thread 
safety and timing issues. Dynamic testing methods could include day-in-the-life testing, 

fault management and response as well as fuzzing. 

• System owners should use penetration testing to find security issues in the integrated and 
configured system.  

• System operators should regularly scan the system for vulnerable versions of software and 
perform regular penetration tests during maintenance and sustainment. 

 

For mission owners required to implement the NIST Risk Management Framework (RMF), the 
following NIST controls can aide in ensuring secure software development controls are in place. 

Many of these controls have been translated into requirement speak (i.e., shalls) in Appendix C. 
The intent of the appendix is to provide mission owners with sample requirement statements to 

put onto acquisition contracts or within the system requirement specifications.  
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FIGURE 8: NIST CONTROLS APPLICABLE TO SECURE SW DEVELOPMENT 
 

 

5.1 DEVSECOPS	PROCESSES 	
Modern software development has embraced DevOps, or development operations, which uses 
automation to encourage frequent software builds, testing, and deployment. The expansion of 

cloud computing has accelerated the development process beyond the standard two-week Agile 
sprint, necessitating new processes to ensure the quality and stability of the code. Ensuring the 

development of secure applications has pushed DevOps to adopt new security-oriented strategies, 
leading to the evolutionary step of DevSecOps. The goal for successful DevSecOps is to enable 

the rapid development of secure code by applying the principle of “guardrails, not gates” to the 
development cycle. This is achieved by constantly improving the automated testing and monitoring 

of the system, rather than relying on a series of manual reviews. 
 

DevSecOps is well-suited to a variety of use cases, however application of its principles can vary 
drastically depending on the software being developed and the environment in which it is 

deployed. For organizations that straddle multiple environments, SANS provides the following 
advice- “Organizations can use Agile or DevSecOps methods for traditional applications, however 

the waterfall development cannot be used for cloud-native/microservices applications- Agile or 
DevSecOps is essential” (Bird & Allen, 2018). DevSecOps is gaining popularity for ground system 

capabilities, while the application of it on the spacecraft currently lags but is not out of the question. 
Digital twin technology evolution may enable DevSecOps for spacecraft, but it is currently in the 

early stages of research. There is no prescriptive recipe for the proper implementation of 
DevSecOps concepts and should be adapted to each mission and system. The following section 

provides insight into the philosophies that guide successful adaptations of the method, as well as 
an introduction to the tooling required to get started. 

5.1.1  FUNDAMENTAL	GOALS 	
At the core of DevSecOps is the concept of shared responsibility across stakeholders. By 
combining the responsibilities of development, security, and operations staff into one cohesive 

group, all stakeholders take a vested interest in consistently improving their system. Developers 
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are incentivized to make their code easier to maintain and operate, operations staff gains a deeper 
understanding of the system and the technology drivers behind features, and security staff shape 

processes to emphasize efficiency, transparency, and a consistent application of security 
principles. Some organizations have transitioned to the idea of “NoOps”, simply assigning each 

product a developer team that is responsible for all aspects of its continued operation- security and 
all. This may be an extreme, however it illustrates the desire to establish a comprehensive and 

cohesive perspective along the entire Software Design Life Cycle. 
 

By removing many of the traditional roadblocks to deployment, DevSecOps teams are able to push 
new features faster by making smaller, incremental improvements. While change naturally 

introduces risk to any environment, making smaller changes reduces the “blast radius” of resultant 
negative impacts while giving the team more opportunities to improve the deployment process. 

Some environments are more forgiving to failures than others, but the practice of rigorously 
improving both the system itself, as well as the processes around the development is a vital aspect 

of DevSecOps. 
 

To understand the effect of more rapid improvements, each environment must be intensely 
monitored. Making numerous changes to any system without tracking potentially relevant metrics, 

even when those changes have been tested, undercuts the ability for the team to respond to 
unforeseen consequences. When judging the overall effectiveness of a DevSecOps team, it is the 

ability to return a system to functionality after a failure- or mean time to recovery- that is the key 
capability. (Murphy, Petoff, Jones, & Beyer, 2016) A team that can identify the root cause of an 

issue, correct the code, automate the testing of the change, and quickly deploy the fix to production 
is demonstrating the key tenets of the DevSecOps method. 

5.1.2  CODE	REPOSITORIES	& 	CI/CD 	P IPELINES 	
Missions may choose to adopt DevSecOps practices slowly, as they learn what aspects of the 
method should be prioritized and which may not be relevant to their use case. The use of code 

repositories and continuous integration/continuous deployment (CI/CD) pipelines are necessary to 
create the collaborative and automated environments that define the method.  

 
System code must be stored in a central code repository with version control- through 

implementations of tools like Git, Subversion, or Mercurial. This allows for all members of the 
team to work on current versions of the code at once and enables code branches for the organized 

development of new features. Code repositories are essential in order to cultivate automation, with 
the goal to store as much of the infrastructure as code as possible. Application code, unit tests, 

database schemas, build/deployment scripts, documentation, and anything else necessary to build 
and operate the system should be checked into this central repository as possible. It should be noted 

that while the repository should encompass all aspects of development and testing, any form of 
data used for authentication- such as passwords and keys- should never be uploaded. The benefits 

to a comprehensive repository are numerous and are often essential to postmortems for root cause 
analysis and other aspects of forensic analysis. Development activities within the repository can 

be considered part of the Pre-Commit stage.  
 

When team members check-in code to the repository, it typically triggers an evaluation of the code 
via a CI/CD pipeline. CI/CD pipelines, such as Jenkins, AWS CodeCommit and CodeDeploy, and 

Bamboo, are in many ways the central hub of a DevSecOps deployment, as they provide the 
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framework to allow development, testing, and deployment to flow end-to-end in an automated 
fashion. Tests within a pipeline are divided into two logical stages- Commit and Acceptance.  

5.1.2.1  THE	COMMIT	STAGE 	
Commit begins with a change made to the state of the project- most often an update to the code in 

the source code repository. Code is compiled (if necessary) and tested to ensure that the system 
works at a technical level. To ensure that the code performs as expected, unit tests are performed. 

Once the code passes unit testing, automated code analysis tools are deployed to ensure that the 
committed code is of acceptable quality and security. The code analysis tools should have the 

capability to automatically scan for desired secure coding guidelines in addition to specific 
weakness classes (i.e., CWEs). Due to the diversified responsibilities of code analysis tools 

(quality, security, adherence to coding guidelines), it is often necessary to utilize a complementary 
set of tools to adequately meet the code analysis goals. Often times developers will choose tools 

without considering the strengths, weaknesses or objective of the tool as their requirement was to 
run “static analysis” which can left critical defects within the source code.  

 
CI/CD pipelines are responsible for integrating and orchestrating the tools necessary for testing 

while providing a central interface to analyze test results. Analysis tool aggregators provide a 
method to combine results from multiple tools into a single interface. Whether using aggregation 

or multiple interfaces, these tools can be used to set thresholds to automate pass/fail decisions on 
a per-tool basis to minimize the amount of downtime spent waiting for testing to conclude. It is 

important to note that certain tools may assign a criticality rating to any negative finding. Criticality 
rating is an important feature for tailoring a CI/CD pipeline to meet the security demands of a 

specific mission or environment. If the developer performed the necessary rigor in the early stages 
to determine which weakness classes (i.e., CWEs) are of importance to the mission, then the 

criticality ratings will have more applicability or meaning to the mission.  

5.1.2.2  THE	ACCEPTANCE	STAGE 	
After the system passes the commit stage, acceptance testing is performed to prove that all 
functional and nonfunctional requirements are met. This stage takes a broader approach to isolate 

both the operational ability of the system and the impact that deploying the current build might 
have on the operational environment. Therefore, the environment used for acceptance testing 

should closely mirror the production environment. Mirroring allows for more meaningful results 
and enables a mission to automate portions of its configuration management across development, 

testing, and operational environments. For ground systems, leveraging the advancement in 
virtualization/containerization, missions have been able to reap the benefits of DevSecOps. 

Spacecraft have yet to reap such benefits, but the advancement of digital twins via instruction set 
simulators DevSecOps should be a possibility soon provided the mission owners are willing to 

accept the risk of this new application of DevOps. 
 

Elements of Commit and Acceptance testing can overlap, depending on the requirements of the 
system or environment. When first building the pipeline, however, it is advisable to methodically 

build additional testing in parallel based on the feedback and evolution of the system, rather than 
deploying an unforgiving series of tests and scans that delay and frustrate the DevSecOps team. 

Therefore, testing matures at a similar rate the target system, and in a manner tailored precisely for 
its configuration and environment. By the time the capability is ready for operational stage, the 



 
 

15 
 

pipeline should be a mix of rigorous automated testing, configuration and compliance checks, and 
manual review before changes are propagated to users. 

5.2 SECURE	CODING	GUIDELINES 	
There are many useful sources from both government and industry from which to derive secure 
coding guidelines. There are coding standards, including security, published by various 

organizations across the world. Coding standards generally are language specific (i.e., CERT C, 
MISRA, ISO/IEC TS 17961) whereas best practices are often language agnostic. Regardless on 

the nomenclature used, it is important to have standards/guidelines and having an automated 
method to test adherence. The following are only examples of secure coding guidelines/standards: 

The Software Engineering Institute’s Computer Emergency Response Team (CERT) publishes 
secure coding guidelines for most major languages (CERT, 2016) (CERT, 2017) (Long, Mohindra, 

Seacord, Sutherland, & Svoboda, The CERT Oracle Secure Coding Standard for Java, 2011). 
Oracle publishes secure coding guidelines for the Java language (Oracle, 2017). The Open Web 

Application Security Project (OWASP) provides guidance for web application security (Open Web 
Application Security Project (OWASP), 2017). Appendix B provides some additional high-level 

design/coding guidelines. 
 

Additionally, the MITRE Corporation publish common software and system security weaknesses 
in a database of Common Weakness Enumerations (CWEs) (MITRE Corporation, 2018). These 

are not necessarily coding guidelines, but they are useful for finding and learning about common 
weaknesses that show up in software systems. 

 
The following sections describe several categories of software security issues to avoid which can 

form the basis of secure coding. These have been compiled from several sources including subject 
matter experts’ experience evaluating many space and missile systems, a set of top CWEs affecting 

space systems identified by NASA’s Independent Verification & Validation Program, and 
contractor secure coding guidelines (with proprietary information removed). They are organized 

into major categories of weaknesses. The prioritization and categorization performed by NASA’s 
Independent Verification & Validation Program is available in Appendix A where they identified 

high priority CWEs (i.e., 346 out of over 900) provided a breakdown of domain applicability for 
either the ground system, spacecraft, or both. The below explanations include both summaries of 

the issue from the CWE and subject matter experts’ interpretation with respect to space systems. 
Wherever possible, references to CWE categories or specific weaknesses are provided to enable 

more in-depth research. 
 

The CWE category or specific weaknesses referenced throughout the document are listed in the 
following table. 

 
TABLE 3 TOP CWES FOR SPACE SYSTEMS 

CWE NUMBER CWE Category or Weakness 
CWE-19 Data Processing Errors 

CWE-20 Improper Input Validation 

CWE-21 Pathname Traversal & Equivalence Errors 

CWE-22 Improper Limitation of a Pathname to a Restricted 
Directory (‘Path Traversal’) 
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CWE NUMBER CWE Category or Weakness 
CWE-79 Improper Neutralization of Input During Web Page 

Generation (‘Cross-site Scripting’) 

CWE-89 Improper Neutralization of Special Elements used in an 
SQL Command (‘SQL Injection’) 

CWE-113 Improper Neutralization of CRLF Sequences in HTTP 
Headers 

CWE-119 Improper Restriction of Operations within the bounds of a 
Memory Buffer 

CWE-121 Stack-based Buffer Overflow 

CWE-122 Heap-based Buffer Overflow 

CWE-125 Out-of-bounds Read 

CWE-134 Use of Eternally-Controlled Format String 

CWE-170 Improper Null Termination 

CWE-189 Numeric Errors 

CWE-195 Signed to Unsigned Conversion Error 

CWE-242 Use of Inherently Dangerous Function 

CWE-243 Creation of chroot Jail Without Changing Working 

Directory 

CWE-252 Unchecked Return Value 

CWE-264 Permissions, Privileges, and Access Controls 

CWE-345 Insufficient Verification of Data Authenticity 

CWE-361 Time and State 

CWE-367 Time-of-check to Time-of-use (TOCTOU) 

CWE-377 Insecure Temporary File 

CWE-399 Resource Management Errors 

CWE-416 Use After Free 

CWE-421 Race Condition During Access to Alternate Channel 

CWE-442 Web Problems 

CWE-444 Inconsistent Interpretation of HTTP Requests 

CWE-457 Use of Uninitialized Variable 

CWE-465 Pointer Issues 

CWE-476 NULL Pointer Dereference 

CWE-477 Use of Obsolete Function 

CWE-601 URL Redirection to Untrusted Site (‘Open Redirect’) 

CWE-644 Improper Neutralization of HTTP Headers for Scripting 
Syntax 

CWE-667 Improper Locking 

CWE-676 Use of Potentially Dangerous Function 

CWE-681 Incorrect Conversion between Numeric Types 

CWE-682 Incorrect Calculation 

CWE-732 Incorrect Permission Assignment for Critical Resource 

CWE-770 Allocation of Resources Without Limits of Throttling 



 
 

17 
 

CWE NUMBER CWE Category or Weakness 
CWE-787 Out-of-Bounds Write 

CWE-798 Use of Hard-coded Credentials 

CWE-833 Deadlock 

CWE-835 Loop with Unreachable Exit Condition (‘Infinite Loop’) 

CWE-840 Business Logic Errors 

CWE-1006 Bad Coding Practices 

CWE-1021 Improper Restriction of Rendered UI Layers or Frames 

 

5.2.1  IMPROPER	INPUT	VALIDATION	(CWE-20)	
In accordance with secure coding guidelines, input validation is a way to ensure that code cannot 

be manipulated in a way that was not intended, like breaking out of the norms of what the 
programmer expects the user to stay within. This attack can range from exposing a web 

application’s configuration files, revealing potential attack vectors, or exfiltrating password hashes 

and credentials from “secure” code (Scholte, Balzarotti, & Kirda, 2012).  

There are multitudes of possible vectors that an attacker can use in exploiting improper input 
validation, leading to denial-of-service attacks and reading or writing secure data from memory or 

storage, or even executing arbitrary commands on the host operating system. In order to mitigate 
these vectors, the code must provide robust input sanitation in any area of the application that 

receives input from the user.  

A common vector used to attack improper input validation is the use of injection, which creates a 

formatted statement that cause the code to interpret the user input as an unintended operating 
system command or operation, outside of what the application is intended to perform. For instance, 

in SQL statements, without proper input validation, it is possible to manipulate any statically 
defined SQL statements in code to be interpreted as a comment, and instead execute custom 

statements with malicious intent (CWE-89). In OS command injection, it is possible to insert a 
malicious operating system command, with the intent to exfiltrate secure data from the host 

system.  

In this PHP example code: 

$userName = $_POST[“user”]; 
$command = ‘ls -l /home/’ . $userName; 
system($command); 

 
The user input for the variable $userName is not sanitized or verified before executing it on the 
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host system as a parameter to the PHP syscall function. As a result, it is possible to append a 

semicolon to the user’s input to expose the system’s password hash file: 

; cat /etc/shadow 

 
This will allow the system to first process the ls command, then print out the password hash file 

as a consecutive command. While there are other guidelines for preventing command injection at 

a host level, there are also mitigations that can be taken at the application code level. 

SQL injection functions similarly to OS command injection, in that an unintended database 
management system command can be run, and the attack vector is also usually in the form of user 

input. If an attacker can determine that an application is using SQL calls, they may be able to 
manipulate hard-coded SQL statements to execute unwanted actions, possibly exfiltrating secure 

data or corrupting critical data, bypassing authentication measures, or using information about the 

database to gain privileged access to the host system (Halfond, Viegas, & Orso, 2006).  

For most application features, it is not necessary to directly call an operating system host 
command, and rather utilize a library that is able to produce similar results, in order to avoid 

exposing access to the underlying operating system (MITRE Corporation, 2018) (CWE-20). 

At the operating system level, it is possible to limit the application to a sandbox, where the access 

to critical files or commands is limited. This can be achieved through the use of solutions such as 
chroot, AppArmor, SELinux, or alternatively, containerizing the code with Docker in order to 

further limit access to the host system. 

If fine-grained input is not strictly necessary from the user, it is possible to mitigate command and 

SQL injection by only providing a secure and vetted set of inputs for the user. If direct user input 
is necessary, the user’s input should be parsed and searched for characters that could indicate 

malicious intent, such as semicolons or redirection characters, as well as some comment characters 
in the case of SQL. In the more specific case of SQL, it may also be necessary to include a library 

that specifically handles SQL statement execution, which is able to only parse intended statements 

against the database server. 

5.2.2  PERMISSIONS , 	PRIVILEGES , 	AND	ACCESS	CONTROL	(CWE-264)	
The three A’s in access control are authentication, authorization and accountability. Authentication 
is proving identity, authorization is proving the right to access a resource, and accountability is 

logging user activity. Any failure within these three portions of access control will allow an 
adversary to read, modify and remove sensitive data, execute programs, and evade detection. 

Failure can occur due to incorrect specifications (privileges, permissions, ownership) set by the 
administrator or by a program, or due to bugs within the access control program that prevent it 

from enforcing security policies.  
 

Common pitfalls for incorrect specifications include: insecure default permissions set by a 
program, multiple objects having insecure permissions inherited from one object within the 

program and incorrect preservation of permissions when copying, restoring, sharing or executing 
objects. Additionally, the program must have a boundary, often called “sandbox”, wherein 



 
 

19 
 

sensitive data is held; this boundary must be tested to have full privilege separation functionality 
before production use. 

 
In a Unix environment, chroot() is a system call used to limit access of a program. If used 

incorrectly, access control will be void. Consider the following code snippet: 
 

chroot("/var/ftproot"); 
... 
fgets(filename, sizeof(filename), network); 
localfile = fopen(filename, "r"); 
while ((len = fread(buf, 1, sizeof(buf), localfile)) != EOF) { 
 fwrite(buf, 1, sizeof(buf), network); 
} 
fclose(localfile); 

Source: (MITRE Corporation, 2018) (CWE-243) 
 

This program is used to transfer files between computers. Because the working directory isn’t 
changed, the program isn’t limited to the directory set by chroot; an attacker would then have free 

reign to access any sensitive file on the computer, including the password file stored on the 
machine.  

 
Dangerous functions may be improperly restricted, allowing an attacker to access them. This 

generally occurs when a function was never intended to be accessed by an outsider, or when a 
function was meant to have limited access, but the developer either did not implement restrictions 

or did so incorrectly. This issue can be mitigated with proper design prior to implementation 
wherein functions that must be exposed and the persons to whom those functions must be exposed 

to are identified and the need for them to be accessed validated; if methods must be exposed, all 
arguments must have input validation and authorization must be limited.   

 
An often-neglected form of incorrectly implemented access control is a lack of encryption. 

Sensitive data left in cleartext can be read by an attacker. Sensitive data could be login credentials 
stored in a cookie, in an environment variable, the registry, in a program’s properties file or in the 

program executable itself. Even if the data is not human readable, certain techniques can allow an 
attacker to view this data, hence only FIPS-complaint encryption should be used. 

 
Access control must be coupled with the practice of least privilege, the principle requiring that 

users, processes, and programs may only access information and resources necessary for their 
legitimate purposes with the least privileges required. When an administrator account is required, 

however, it is important to limit administrator privileges to a small subset of users, or even restrict 
the administrator accounts on a function or time-limit basis. To keep these administrator accounts 

secure, a two-factor authentication system—such as a token or a smartcard—must be implemented 
to add a failsafe in case a password is cracked or otherwise acquired by an adversary. 

 
Passwords should never be encrypted or stored in plain text. It’s recommended to abide by the 

NIST Special Publication 800-63B. Section 4.1 of the guidelines state that passwords must be 
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salted with random 32 bits and hashed using PBKDF2 with at least 10,000 iterations. Password 
complexity should include ASCII special characters, numbers, lowercase, and uppercase letters. 

Cookies should not include the user’s password and should instead include a new password 
generated by the session host with at least 64 bits of entropy. For more information, see section 

7.1 of the guidelines. Credentials should never be hard-coded, or otherwise built-in, to any 
software or website. Password reuse should be forbidden, though many employees ignore this rule. 

This neglect in combination with hard-coded credentials may allow access to systems beyond the 
one with hard-coded credentials (MITRE Corporation, 2018) (National Institute of Standards and 

Technology, 2017) (CWE-798).  

5.2.3  DATA	PROCESSING	ERRORS	(CWE-19)	
Errors in data processing can lead to vulnerable applications, as these open common attack vectors 

that malicious actors target first when assessing an application.  

In general, this class of errors deals with input provided by the application user, and thus, command 
or other types of injection can be performed on the host system through code that lacks input 

validation (see 0). 

In the case of format strings, an entire set of exploits are possible for a program, especially if an 

initial instance of a format string vulnerability is copied across the entire codebase. This occurs 
primarily in C, since it allows the code to accept as many arguments as possible, thus, if the code 

uses an unsafe function that allows the parsing of format strings with user input, this is a possible 

attack vector. A malicious attacker can exploit unsafe string parsing to execute shellcode. 

Though intentionally crafted, consider the following code snippet: 

#include <stdio.h> 
 
void printWrapper(char *string) { 
  
 printf(string); 
} 
 
int main(int argc, char **argv) { 
 
 char buf[5012]; 
 memcpy(buf, argv[1], 5012); 
 printWrapper(buf); 
 return (0); 
} 

Source: (MITRE Corporation, 2018) (CWE-134) 
 

The use of a printf() call in this example code allows for a wide-open attack vector, in combination 
with the large buffer size, which allows for virtually any sort of shellcode execution.  
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C is the most vulnerable language to this error, as it is not type-safe, and while some other 
languages may be vulnerable to a format string attack, it is likely not as effective as running the 

attack on an application written in C. Therefore, if possible, the most overarching mitigation for 
this category of issue is to rearchitect the code to use a type-safe language instead. However, if 

this is not possible, format string vulnerabilities can usually be detected at compilation time by the 
compiler or through static analysis. 

 
In other cases, mishandling or abusing sentinel or null terminator characters can cause unexpected 

logic errors at runtime. This error generally involves string processing in C, which can be caused 
by the insertion of a sentinel character, usually in the form of a null terminator, as a part of user 

input. Although this does not open any serious attack vectors as format strings, sentinel characters 
may cause a loss of data integrity by truncating data in unexpected areas. 

 
However, as a related data error, the misuse or omission of a null terminator character can have 

serious side effects, allowing for potential access of memory beyond the allocated area or crashing 
a system by overflowing a buffer. In other cases, exploitation of a null terminator attack vector can 

allow an attacker to take control of a host system through code execution. 
 

This form of attack is most seen in C, which strictly requires the correct usage of a null terminator 
for proper code functionality. Even with the “safe” versions of functions that are designed to have 

safeguards that traditionally “unsafe” functions lack, they can still be vulnerable to a null 
terminator-based attack like the following code example: 

 

#include <stdio.h> 
#include <string.h> 
 
int main() { 
 
 char longString[] = "String signifying nothing"; 
 char shortString[16]; 
 
 strncpy(shortString, longString, 16); 
 printf("The last character in shortString is: %c (%1$x)\n",  
  shortString[15]); 
 return (0); 
} 

Source: (MITRE Corporation, 2018) (CWE-170) 
 

In this case, the data handled must be considered carefully, because there is no null terminator 
placed at the end of character array/string shortString, even with the use of strncpy(). It is also 

possible to use this exploit in non-C based languages, such as PHP, where null termination can 
effectively be used to exfiltrate data from non-web application directories, even if other traditional 

input validation issues are mitigated: 



 
 

22 
 

 

$file = $_GET['file']; 
require_once("/var/www/images/$file.dat"); 

 
Even though this PHP snippet strictly requires a file with a predefined extension, it is still possible 

to use a null terminator attack to terminate the string at the $file variable indicator, and instead 
access any file from the host system’s filesystem. 

 
In some cases, data errors can branch into more subtle code issues, such as unintended exposure 

of secure data. This will occur if debug statements are used at any point in the code, such as in 
catching exceptions or in some cases where an attacker may be able to crash a web server, 

application, or database management system to reveal underlying, built-in debug routines 
(Carnegie Mellon University, n.d.). In many cases, system information may be disclosed even with 

normally functioning code.  
 

A wide range of potential host system information can possibly be revealed, such as web 
application filesystem paths, stack traces from exceptions, detailed exception information, or 

general system information that may include kernel versions. Even based on this limited 
information revealed, an attacker may be able to compile enough data on a host system to exploit 

it further. The best way to mitigate this class of data processing error is to configure the web 
application or server to redirect all logs and error output to a secure log file, inaccessible by normal 

means from the web application. 
 

A further class of data processing errors generally consists of logic-based errors in coding, but may 
lead to a loss of integrity, as casting in code may cause a loss of precision. Though some language 

may be able to handle type casting gracefully, in many languages, it may cause a loss of data 
precision if converting data between types without verification.  

 
In the PHP code sample below, when adding the two variables together, casting the floating-point 

value to an integer will round it down, which may be an unexpected result as the value is 4 instead 
of 5. To best mitigate this data processing error, avoid casting where possible and keep the use of 

primitive data types consistent. Additionally, the implementation of floating-point values may not 
be portable across languages and architectures (Hauser, 1996). 

 

$floatVal = 1.8345; 
$intVal = 3; 
$result = (int)$floatVal + $intVal; 

Source: (MITRE Corporation, 2018) (CWE-681) 
 

5.2.4  NUMERIC	ERRORS	(CWE-189)	
Though innocuous at first glance, a numeric error in code can have somewhat far-reaching 

consequences and lead to a possible attack vector for a malicious actor. In general, the class of 
numeric errors involve simple oversight in performing memory accesses or calculations of 

variables used in code but can lead to a denial of service due to unexpected results, possible 
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resource exhaustion or opening of a memory-based exploit in memory allocation numeric errors, 
or memory corruption and exposure. 

 
In the case of incorrect calculation, the aforementioned consequences open up, with the additional 

possibility of exploiting them as an attack vector into a host system. Incorrect calculations can lead 
to overflow depending on the datatype used, causing unexpected output or runtime errors. In other, 

more severe cases, an incorrect calculation can lead to serious memory-based errors or 
vulnerabilities, such as in the following example: 

 

int *p = x; 
char * second_char = (char *)(p + 1); 

Source: (MITRE Corporation, 2018) (CWE-682) 
 

In this example, the memory offset used to reference the integer will cause an incorrect offset. 
Although the effects of this incorrect calculation are somewhat dependent on the actions taken to 

the variable second_char and the system architecture, it still has the ability to cause reads or writes 
on unintended areas of memory. 

 
Incorrect calculations can be primarily mitigated by carefully considering the programming 

language’s compiler’s interpretation of the code, as well as the host system’s architecture, which 
can assist in preventing flawed code such as in the above example.  

 
For cases of overflow or unexpected results, validation should be utilized to make sure that 

intended values do not overflow, and stay within a certain bound, or consider data types or libraries 
that are intended to prevent overflow or out-of-bounds logic errors. Additionally, in the case of 

incorrect calculation with dynamic input, it may be possible to use a fuzzer or other dynamic 
testing tools (see section 6.2) to find input that causes the application to behave unexpectedly 

through incorrect calculation errors. 
 

Another subset of numeric errors is in integer coercion errors, otherwise known as improper type 
conversion of primitive data types. While not as devastating as incorrect calculations, integer 

coercion errors can have an impact on integrity and availability, and rarely on confidentiality if the 
improper type conversion leads to a buffer overflow vector. 

 
Consider the following code snippet: 
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DataPacket *packet; 
int numHeaders; 
PacketHeader *headers; 
 
sock=AcceptSocketConnection(); 
ReadPacket(packet, sock); 
numHeaders =packet->headers; 
 
if (numHeaders > 100) { 
 ExitError("too many headers!"); 
} 
headers = malloc(numHeaders * sizeof(PacketHeader); 
ParsePacketHeaders(packet, headers); 

Source: (MITRE Corporation, 2018) (CWE-195) 
 

In this example, the application receives a user-defined number of packet headers, which is then 
verified and allocated in memory; however, the input is initially stored as a signed integer. A 

malicious user can input a negative number that bypasses the initial range check, but when the 
system attempts the memory allocation, a negative integer will overflow the datatype used by 

malloc to determine the amount of memory to allocate. This be manipulated to either attempt to 
allocate too much memory, causing a denial of service, or too little memory, possibly opening a 

vector for a buffer overflow attack. 
 

The solution for integer coercion errors can be mitigated at the coding language level, by 
alternatively using a language that will catch and throw exceptions upon encountering a coercion 

error. If this is not a feasible task, the code should be refactored in order to prevent coercion from 
being necessary, or if strictly required, carefully consider the primitive data types in use to prevent 

overflow from causing the previously mentioned issues. 
Another subset of numeric errors is the incorrect calculation of buffer size, which can be an 

extension of an incorrect calculation or integer coercion errors. The root cause is the same, where 
an incorrect calculation causes the buffer size to be incorrect, which may either cause a buffer of 

unexpectedly small size, opening a buffer overflow vector, or in the case of an overly large buffer 
allocation, the application may crash on attempting to allocate the memory. This error can still 

occur even if the application is coded according to a known set of expected input ranges and would 
behave normally in most circumstances. 

 
In the sample code below, assumptions are made about the character encoding scheme, and thus 

an implicit buffer size calculation is made. With the addition of the ampersand character to the 
destination buffer variable, the encoding scheme will now require more memory allocated (five 

times the size of a C character rather than 4). However, since the code statically allocates memory, 
it is possible to overflow the buffer via inputting too many ampersands. 
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char * copy_input(char *user_supplied_string){ 
 int i, dst_index; 
 char *dst_buf = (char*)malloc(4*sizeof(char) * MAX_SIZE); 
 if ( MAX_SIZE <= strlen(user_supplied_string) ){ 
  die("user string too long, die evil hacker!"); 
 } 
 dst_index = 0; 
 for ( i = 0; i < strlen(user_supplied_string); i++ ){ 
  if( '&' == user_supplied_string[i] ){ 
   dst_buf[dst_index++] = '&'; 
   dst_buf[dst_index++] = 'a'; 
   dst_buf[dst_index++] = 'm'; 
   dst_buf[dst_index++] = 'p'; 
   dst_buf[dst_index++] = ';'; 
  } 
  else if ('<' == user_supplied_string[i] ){ 
 
   /* encode to &lt; */  
  } 
  else dst_buf[dst_index++] = user_supplied_string[i]; 
  } 
  return dst_buf; 
} 

Source: (MITRE Corporation, 2018) (CWE-119) 
 
In general, incorrect buffer size calculation is a wide-ranging issue, and the best way to course of 

action to prevent this from affecting an application is through careful consideration of the datatypes 
involved, as well as not making assumptions on the type of data a potential user will input. 

 
An example of a real-world consequence resulting from buffer size miscalculation is the 

Heartbleed vulnerability, which was the result of not realizing the true size of heartbeat packets, 
leading to a massive buffer overflow attack vector. This attack vector allowed attackers to read 

past allowed memory on the server through crafting a heartbeat response request larger than the 
intended length.  

 
To avoid such grave errors, the overarching solution is to rearchitect the application to not use C 

code, as many other modern languages handle memory allocation to prevent buffer overflows. If 
C is strictly necessary, use non-array data structures that are more robust and allow for better 

association between data accesses and valid memory, such as graphs or queues (Black & Bojanova, 
2016).  

5.2.5  IMPROPER	RESTRICTION	OF	OPERATIONS	W ITHIN	THE	BOUNDS	OF	A	MEMORY	
BUFFER	(CWE-119)	
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Buffer overflows and misusage with memory read and writes prose critical vulnerabilities and risk 
to a software system. In 2014 a single buffer over-read in OpenSSL allowed hackers access to 

sensitive data such as private keys via crafted packets. This vulnerability became to be known as 
Heartbleed, which poses as just one of the many security bugs associated with improper handling 

of buffers (National Vulnerability Database, 2014). These types of errors have the potential to 
bypass authentication, retrieve passwords, crash systems, and cause covert code execution. 

 
When creating a memory buffer, ensure that the program is writing to the intended place in 

memory, otherwise an out-of-bounds buffer write could occur. This entails a situation where the 
buffer writes data past or before the beginning of its allocated slot of memory (CWE-787). Memory 

overwriting can occur within heap (CWE-122) or stack memory (CWE-121) as well. A heap-based 
overflow typically occurs when functions such as malloc(), memory allocation function within C, 

are misused. This situation can cause functions and data stored within the heap to be overwritten, 
opening a system up to memory exploitation. (Ferguson, 2007)  

 
In the C example below, the buffer within the malloc() is given a fixed size within the heap, but 

the argv[1] value within the strcpy method could exceed the allotted value, resulting in an 
overflow. This situation can become exploited to overate memory within the heap if the argv[1] 

was purposefully given a value exceeding the buffer size. 
 

#define BUFSIZE 256 
int main(int argc, char **argv) { 
 char *buf; 
 buf = (char *)malloc(sizeof(char)*BUFSIZE); 
 strcpy(buf, argv[1]); 
} 

    Source: (MITRE Corporation, 2018) 

 
Stack-based overflows occur when a buffer allocated to the stack is overwritten. These situations 

can result in function parameter values being changed, as well as local variables within a program. 
The example in C below is similar to the one above, but notice it lacks a malloc(), a function that 

is associated with the heap. Within this code, the argv[1] value is not checked before being 
parametrized within strcpy(). Just as the heap example, this variable can be purposely overloaded 

to overwrite data within the stack. 
 

#define BUFSIZE 256 
int main(int argc, char **argv) { 
 char buf[BUFSIZE]; 
 strcpy(buf, argv[1]); 
} 

     Source: (MITRE Corporation, 2018) 
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Other than overflows, buffer out of bounds issues can occur due to semantic error (CWE-125). 
When memory is pointed to a position before the buffer, memory can be accessed past the buffer. 

This situation occurs when an index or a pointer. 
 

When managing memory operations using buffers, always ensure logic is sound and all measures 
are being followed to prevent buffer out of bounds errors. Memory reads and writes should be 

fixed and checked to the exact value that is being read or written.  

5.2.6  LOGIC	ERRORS	(CWE-840)	
Logic errors may be a significant time sink in secure coding assurance, as they still allow the 
program to execute after compilation but may produce unexpected behavior. This category of 

errors can impact an application’s availability and confidentiality. 
In the case of many applications, it is not necessarily feasible to keep all application-critical data 

in the application’s allocated memory, as it may be insufficient, especially if the data is associated 
with multiple client connections. As a result, the code may be designed to frequently read or write 

files to disk, which may involve also setting permissions to ensure correct availability of files only 
for authorized host system users. In this case, the code must be assessed to ensure that correct 

permissions are being set on an accessed file, as in most cases, the file will initially inherit the 
parent process’s permissions, but may unpredictably change following subsequent application 

execution (MITRE Corporation, 2018) (Seacord, n.d.) (CWE-732).                        .   
 

In the Perl code sample below, the output file created may inherit permissions from its parent 
process or running user and will be created with restrictive permissions. However, if this file is 

reused across a modular application or by other users on the host system, the permissions may 
change unexpectedly, and become world readable and writable due to the highlighted snippet, 

which is likely not the intended behavior or availability desired. 

$fileName = "secretFile.out"; 
 
if (-e $fileName) { 
 chmod 0777, $fileName; 
} 
 
my $outFH; 
if (! open($outFH, ">>$fileName")) { 
 ExitError("Couldn't append to $fileName: $!"); 
} 
my $dateString = FormatCurrentTime(); 
my $status = IsHostAlive("cwe.mitre.org"); 
print $outFH "$dateString cwe status: $status!\n"; 
close($outFH); 

Source: (MITRE Corporation, 2018) (CWE-732) 

To prevent this form of logic error from occurring, the application should be coded to a checksum 

on the file to verify the lack of tampering with respect to the previous run, as well as ensure that 
permissions have not been altered to an unexpected value. At the host system level, the application 
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can be isolated from the rest of the system through containerization, or permissions can be set on 
specific files to ensure they are immutable.  

 
While incorrect permissions are an instance of a logic error that can impact confidentiality, infinite 

loops caused by faulty logic in code can critically impact an application’s availability. A loop in 
application code logic is caused by unexpected conditions being provided, causing the programing 

to continuously execute a set of instructions, consuming vital resources in CPU cycles or memory, 
and locking the application in a state where it may not be able to respond to further incoming 

requests. 

See the following code snippet: 

public boolean isReorderNeeded(String bookISBN, int rateSold) { 
 
 boolean isReorder = false; 
 
 int minimumCount = 10; 
 int days = 0; 
 
 // get inventory count for book  
 int inventoryCount = inventory.getIventoryCount(bookISBN); 
 
 // find number of days until inventory count reaches minimum  
 while (inventoryCount > minimumCount) { 
 
  inventoryCount = inventoryCount - rateSold; 
  days++; 
 } 
 
 // if number of days within reorder timeframe  
 
 // set reorder return boolean to true  
 if (days > 0 && days < 5) { 
  isReorder = true; 
 } 
 
 return isReorder; 
} 

Source: (MITRE Corporation, 2018) (CWE-835) 

 
In this case, the code will run as expected, unless the provided value for rate sold is zero or 
negative, as the code will become stuck in the while loop, either unable to decrement the 

inventoryCount variable as expected, or in the case of a negative value, loop until inventoryCount 
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overflows. For both scenarios, the while loop instructions execute continuously, and lock resources 

until the application is terminated or the data overflows. 

The best solution to mitigate logic errors causing infinite loops is to implement input validation or 
impose limits within the code, to prevent loop-based instructions from executing continuously. In 

the above example code, validating the rateSold parameter to be greater than 1 will prevent the 

code from being stuck in a loop.  

Another possible situation where limits must be imposed to prevent infinite loops is if the 
application attempts to make a connection or wait for a response from a client application. In this 

case, the logic may allow for the server application code to wait indefinitely, executing a looping 

instruction that waits for a client response.  

5.2.7  PATHNAME	TRAVERSAL	ERRORS	(CWE-21)	
Depending on application requirements, the software developer may allow the application direct 

access to files on the host system, and therefore may be coded to allow relative or absolute paths 
in order to find the required files. However, if user input is allowed at any point involving path 

traversal, it may be possible for a malicious actor to break out of the intended filesystem locations 

and access confidential data. 

This potential attack vector has been the source of many acknowledged bugs in commercial 
software and most commonly found in web applications or servers; one notable example is in 

Microsoft’s ASP.NET (Burnett, 2004). The errors in path traversal allow attackers to break out of 
the traditional web server hierarchy to access protected files outside of the host system’s web 

directory. The most common form of this attack on a web application involves using special 
relative directory references with “..”, which is a relative reference to the parent directory. If the 

application or web server is not properly coded, it may allow this path traversal. 

Once an attacker confirms that an application or web server is vulnerable to pathname traversal 

errors, they can exfiltrate data or alternatively overwrite files with malicious ones. For instance, if 
the application is hosted on a Unix-like system, the attacker may be able to insert a new password 
entry to the end of the encrypted passwd/shadow file to obtain full shell access. Alternatively, the 

attacker can also overwrite known system binaries or libraries with malicious content, such as 

keyloggers, or nonfunctional code that will cause a denial of service. 

For instance, in the following example Perl code: 

my $dataPath = "/users/cwe/profiles"; 
my $username = param("user"); 
my $profilePath = $dataPath . "/" . $username; 
 
open(my $fh, "<$profilePath") || ExitError("profile read error: 
$profilePath"); 
print "<ul>\n"; 
while (<$fh>) { 
 print "<li>$_</li>\n"; 
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} 
print "</ul>\n"; 

Source: (MITRE Corporation, 2018) (CWE-22) 

In this snippet of Perl code, the application accepts a username from the user as a parameter, which 
is then accessed directly from the host’s filesystem. However, since there is no path validation in 

this case, if an attacker uses relative parent directory references, it may be possible to cause the 
code to open a secure file, such as the passwd or shadow file. For instance, if the above code is 

provided the following output: 

../../../etc/shadow 

 
The input string shown will cause the application to traverse into the previous relative up to the 

root, then open the secure hash record file for the host system, instead of creating a user directory. 

There are wide ranges of possible mitigations to take in response to pathname traversal errors. One 

consideration is to rearchitect the application, and not allow input from the user that could be used 

for such path traversals outside of the intended files allowed. For the above example code: 

if (index($profilePath, “/”) != -1 || index($profilePath, “..”)){ 
 print “Error: Invalid Path”; 
 [Return to calling function or quit script] 
} 

 

This if statement is only for illustration but is a possible example that will help mitigate path 
traversal, as it would theoretically disallow any user input that may attempt to traverse into 

directories containing secure data. 

If user input is necessary, provide validation of the user provided input values and match against 

a whitelist of allowed directory values, while limiting parent path traversal by restricting the 
special “..”. Additionally, many languages provide a function for revealing the full canonical path 

of a string, which can also be compared against a whitelist to prevent traversal outside of the 

application’s intended directory.  

At the operating system level, it may be possible to configure the web server itself to automatically 
canonize any attempted filesystem traversals and prevent files outside of the web application 

directories. In most cases, the web server process is run as an unprivileged user that does not have 
access to system files such as the passwd file, but an attacker may still be able to gain access to 

hidden files or other confidential data that is within the web application directory’s bounds. 

5.2.8  INSUFFICIENT	VERIFICATION	OF	DATA	AUTHENTICITY	(CWE-345)	
Integrity checks are a way of checking data authenticity and are a vital part of implementing safe 

software security measures to ensure that data has not been compromised during transfers, by 
human error, from hardware, or by malicious users. They are required in adherence to the National 

Institute of Standards and Technology (NIST) guidelines regarding security and privacy controls 
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on federal systems. If the integrity check is poorly designed or missing all together, then a system 
can accept invalid data. Software assurance measures insists that critical data within a software 

system should have its integrity maintained for its accuracy and consistency throughout its entire 
life-cycle. This may be enforced with cryptographic hashes and/or encryption/decryption. 

Algorithms should be implemented to verify the logical and physical integrity of data using these 

mechanisms (National Institute of Standards and Technology, 2017). 

5.2.9  T IME	AND	STATE	(CWE-361)	
Time and state can play a huge role in security, especially when it comes to multi-core, multi-

threaded, and distributed systems. Critical resources being shared across multiple processes, 
computers, or cores can produce vulnerabilities to a software system if they are not properly 

warded against race conditions with proper locking. 

5.2.9.1 RACE	CONDITIONS 	
A race condition is an undesirable situation that involves multiple operations trying to access 
memory or conduct the same execution at the same time. Race conditions can cause systems to 

crash, halt, or corrupt memory. In every instance a race condition can occur, measures, such as 
proper locking of resources, should be implemented to prevent a software system from deviating 

from desired behavior.  

A Time-of-check to Time-of-use (TOCTOU) race condition describes an instance where a critical 

resource’s state is checked, but the state can still change before the resource is used. In this 
vulnerability, the purpose of the check is nullified, and an attacker can influence the state of a 

resource during its availability (CWE-367). An attacker can gain access to this unauthorized 
resource and the resource can be maliciously altered, such as log files and memory. There are 

instances where a temporary file on a system (CWE-377) could be used to steal data during an 
attack (MITRE Corporation, 2018). Often, engineers may want to use a temporary file when 

developing a program. If left unchecked, unauthorized users can access and modify the file, which 

could crash a program or alter its memory. 

Attackers can access a privileged resource if an alternate channel to the resource is unfiltered. In 
some situations, an attacker may also be able to assume identity and gain privileges to other 

resources (CWE-421). 

Nearly all race conditions are preventable, and preventive measures can be taken during each phase 

of the development process. During design, it is important to determine the critical resources of a 
system and which components of a system require access to that critical resource. A shared 

resource should be evaluated to ensure its necessity to be read and updated by multiple 
components. If it does not make sense for the resource to be shared across a system (or systems), 

then the resource should stay in scope of the individual component. Mutex locks and semaphore 
implementations can project against race conditions, as they prevent from multiple processes 

accessing data at the same time. 

5.2.9.2 IMPROPER	LOCK	HANDLING 	
Improper locking of a resource, an instance where a time and state sensitive area is not controlled 
with a lock, makes the resource vulnerable to race conditions (CWE-667). Locks should be used 
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to prevent race condition situations. In order for a thread, core, or system to access a shared 
resource, they will request to unlock the source if it is available for use. If not, the thread, core, or 

system should wait until the source is free. If this method is not implemented correctly, a myriad 
of security and performance vulnerabilities will arise. 

 
A deadlock can occur as well, a situation where multiple threads, cores, or systems are waiting for 

a resource to be available, but there is no possible way to unlock the resource (CWE-833). This 
causes a program to halt or crash because all processes become stalled until they can access their 

resource. Excessive locking of a critical resource can also result in a program crashing since 
performance is degraded. An attacker could exploit this and cause a Denial of Service (DoS) attack 

on a system.  
 

A possible solution for improper lock handling is to employing deadlock avoidance policies 
(DAPs) to implement secure locking methods (Reveliotis & Fei, 2017). Following DAPs assist in 

preventing dead locks, they also instruct on proper lock handling, preventing a multitude of issues 
regarding lock misusage. 

5.2.10  BAD	CODING	PRACTICES	(CWE-1006)	
Writing software yields itself to bugs. Some of those bugs may not be easy to detect, allowing 

security vulnerabilities in the software that may compromise sensitive data. To protect against 
these issues, the development team must be aware of and actively avoid bad coding practices. 

These can include using dangerous functions, ignoring compiler warnings, leaving uninitialized 
variables, writing bad documentation, and improperly logging errors. 

 
CWE-477 and CWE-676 describe potentially dangerous functions that, if used incorrectly, can 

cause a vulnerability. For instance, in C/C++ using strcpy without checking that the source can fit 
into the destination can cause a buffer overflow. This can be avoided by adding checks before data 
is copied. It is recommended to identify APIs that can be potentially dangerous and brief 

developers upon their proper use. Similarly, CWE-242 describes inherently dangerous functions 
that cannot be used safely. Generally, these functions have no way to be validated, causing 

unpreventable buffer overflows. Inherently dangerous functions must be identified, logged, and 
prohibited. Some static analysis tools, like the Clang Static Analyzer, warn the developer about 

dangerous functions; such tools should be implemented into the development process. 
 

Uninitialized variables are addressed in CWE-457. In addition to causing general instability in a 
program, uninitialized variables allow an adversary to launch a denial-of-service attack should 

they identify a way to trigger the use of an uninitialized variable. Using default variable values and 
setting the compiler to warn about uninitialized variables are good programming practices, even 

in languages that do not require explicit variable declaration. In general, developers should be 
advised to heed compiler warnings and compilers should be set to the highest warning levels. 

Simple mistakes such as uninitialized variables can cause catastrophic events but can be easily 
noticed if the compiler is configured properly. 

Oftentimes when employees leave the company, or even a department within the same company, 
their knowledge leaves with them. To avoid this, all function behavior, input, and output 

parameters, return values, exceptions, custom APIs and frameworks must be sufficiently 
documented. The documentation must be comprehensive enough for a person without prior 

knowledge to gain a full understanding of the code. 
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Improper logging can cause leaking of sensitive information. For instance, a file not found error 

may include a file name that is sensitive. Additionally, errors that are too descriptive can allow an 
adversary to keep prodding at a program, using logs and exceptions as clues to aid in their attack. 

It’s advised to keep logs from being too descriptive. Instead, use error codes only known internally 
and reference those codes within your logs. This will defend against adversaries using logs as clues 

to their attacks.  

5.2.11  RESOURCE	MANAGEMENT	(CWE-399)	
Resource management of host system memory at the code and application level is critical in both 
maintaining the application’s stability, as well as in preventing secure data from being leaked, even 

after the termination of the application. This is a broad category that includes misuse of system 
resources leading to resource exhaustion, failing to properly free memory, leading to memory 

leakage, attempting to free memory twice, or attempting to access a memory address after it has 
been freed. 

 
Resource exhaustion can occur through multiple vectors, whether caused by developer oversight 

or malicious intent to cause denial of service. In general, resource exhaustion occurs when the 
application’s code keeps the use of resources unchecked, like when accepting client connections 

or allocating memory for user input. If limits are not imposed on system resources, resource 
exhaustion will impact the host system’s availability. 

 
Consider the following code snippet: 

 

sock=socket(AF_INET, SOCK_STREAM, 0); 
while (1) { 
 newsock=accept(sock, ...); 
 printf("A connection has been accepted\n"); 
 pid = fork(); 
} 

 Source: (MITRE Corporation, 2018) (CWE-770) 
 

In this application, there are no limits on the number of client socket connections that can be made, 
and on every connection a process fork occurs. Since forking the client code creates an entirely 

new instance of the application for the client, an attacker can possibly create an infinite number of 
client connections and tax the host system with multitudes of forked processes. 

 
Memory exhaustion can also occur when usage is not checked, and input is allowed from a user: 
 

int processMessage(char **message) 
{ 
 char *body; 
 
 int length = getMessageLength(message[0]); 
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 if (length > 0) { 
  body = &message[1][0]; 
  processMessageBody(body); 
  return(SUCCESS); 
 } 
 else { 
  printf("Unable to process message; invalid message     
length"); 
  return(FAIL); 
 } 
} 

 Source: (MITRE Corporation, 2018) (CWE-770) 

 
In this sample function, the application accepts user input as a message string, where the only 

verification enacted is the string length being a positive, non-zero value. However, it is possible 
for the string to be an extreme length and could use a large amount of system memory in storing 

the string. 
 

The best way to mitigate resource exhaustion of all kinds is to implement data validation or limits 
on the amounts of resources allowed to be consumed by the application. At the system level, the 

application’s system host user can be confined to a limited amount of memory or CPU usage and 
ensures that less resources are dedicated to application-level users. At the application code level, 

input validation should be enacted, to ensure that any fields requiring user input are not able to 
cause memory exhaustion. 

 
A double free may occur in code due to attempts to free memory addresses that have already been 

freed (OWASP, n.d.). Application code should also be checked for a possible double free of 
allocated memory, as an attempt at a double free may cause a denial of service through causing a 

crash or allowing a malicious user to cause a buffer overflow and have access to the host system’s 
memory. In general, a double free may be hard to identify because it can occur at multiple points 

within code, and across multiple conditional statements. The best solution is to identify potential 
double free occurrences with static code analysis, which should be run as a part of secure coding 

by default. 
 

For all resource management concerns, if possible, consider an alternative programming language. 
For instance, Java, which runs all code in a virtual machine and provides its own form of memory 
management to prevent the host system from being overloaded. 

5.2.11.1 POINTER	ISSUES	(CWE-465)	
Improper use of pointers causes problems within software that ultimately leave software systems 

vulnerable to exploits. A NULL pointer deference is an instance where a software application 
points to a blank space in memory that causes processes to crash or force exit (CWE-476). After a 

forced abruption, returning the software program back to a safe state of operation can be difficult. 
This leaves an opportunity for an attacker to keep a software down and possibly cause code 

execution depending on some OS architectures and programming languages (MITRE Corporation, 
2018). An example of this is captured below in C where an IP address is being written to the 
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hostname buffer within the strcpy() method. If an IP address were not in the list of hostnames, a 
NULL pointer could be returned, crashing the program. 

 

void host_lookup(char *user_supplied_addr){ 
 struct hostent *hp; 
 in_addr_t *addr; 
 char hostname[64]; 
 in_addr_t inet_addr(const char *cp); 
 validate_addr_form(user_supplied_addr); 
 addr = inet_addr(user_supplied_addr); 
 hp = gethostbyaddr( addr, sizeof(struct in_addr), AF_INET); 
 strcpy(hostname, hp->h_name); 
}  

    Source: (MITRE Corporation, 2018) 

 
Another pointer related security flaw to consider is incorrect pointer scaling, a situation where a 

pointer contains semantical error involving implicitly called math operations. Incorrect pointer 
scaling can lead to a buffer over-read or under-read (refer to 3.2.5). 

 
Use-after-free (CWE-416) is a situation when a program returns dynamically allocated memory to 

the heap with a free operation, but uses the pointer as though it were still valid later. The memory 
may have been re-allocated for another use. This may allow an attacker to read or overwrite 

sensitive information at the re-allocated location.  
 

Nearly all pointer issues are preventable with extensive testing and exception handling. Every 
situation when a pointer is introduced should be analyzed and determined if the given situation 

would benefit from using a pointer as opposed to a pass-by-value variable. 
 

 

5.2.12  WEB	PROBLEMS	(CWE-442)	
Though ideal for catering towards larger populations, whether on an internal or public network, 

web applications are susceptible to being attacked. Due to their accessible nature, there are many 
features on websites that must be safeguarded from malicious users. 

 
Typical website architecture relies on three main components: a frontend, a backend, and a 

codebase that interfaces between the two. Each component requires end-to-end security, from 
when a user inputs data into a text field box up until it gets stored into a database. When input is 

prompted by the user within frontend interface, ensure that input is validated. Sensitive 
information, such as hash passwords, should be stored properly within a secure database free of 

possible code injection (refer to 0) (CWE-1021). Account and user access should be controlled 
and limited, to prevent improper access to data (refer to 5.2.2). 

 
Encrypting requests from point A to B is a secure method when approaching a web application. 

Encryption ensures that unauthorized, third-party listeners are unable to decode the bytes being 
transferred. Confidentially is one of the reasons why HTTPS is becoming a standard for websites 
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instead of HTTP, as all communications between the website and the web browser are 
encrypted(CWE-444) (CWE-644) (CWE-113).  

 
Cross-site scripting (XSS) is a vulnerability that allows non-developer code to be injected into a 

web browser executable code (CWE-79). XSS enables an attacker to directly interact with a 
website to exploit it or put malicious code on a victim’s browser (CWE-601). Below is an example 

of a potential XSS exploit that runs a script from an attacker’s personal server that can be injected 
into any website’s html files. In this situation, an attacker embeds a session-hijacking script within 

a website’s forum input field, and the website accepts the field and posts it on their webpage. A 
victim browses to the page, which causes the website’s html as well as the attacker’s scripted to 

become rendered and executed in their browser. The victim’s session information is sent to the 
attacker’s server.  
 
FIGURE 9: XSS ATTACK 

 
 

In order to prevent XSS, all html input fields should be filtered to ensure html and scripts are not 
embedded within the string. In addition, web application front-ends should contain code and 

functionality that control’s the website’s visual interface. All data should be handled, validated, 
and pushed towards backend processes, preventing the browser from having access. 

 
Just as web browser executable code can be easily manipulated, URLs can be used to access web 

application files stored on a server, giving a malicious user a gateway to backend code. This is 
easily preventable by creating a Whitelist and granting the user access to only the frontend code, 

throwing a 404 error whenever the user ventures outside of their allotted domain. 
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5.3 COMMERCIAL , 	OFF-THE-SHELF; 	FREE	AND	OPEN-SOURCE	SOFTWARE; 	
AND	RE-USE	SECURITY	CONCERNS 	

Developers tend not to analyze or consider the security risks that Commercial, Off the Shelf 

(COTS), Free and Open-Source Software (FOSS), and re-use software impose on mission software 
systems. This software can produce weaknesses as readily as new development code. 

 
As a part of FOSS culture, most contributions are done voluntarily, or with limited cost, by many 

different developers that may or may not interface with one another. This could indicate that no 
development process or procedure was followed, such as testing, peer review, etc. Open-source 

technologies also have their code bases exposed to the public, rendering itself an open slate to have 
potential vulnerabilities found with no grey area left on its functionality, interfaces, and design.  

Similar with FOSS, COTS software has unknown software pedigree, and its development 
standards and maintenance procedures are not able to be easily validated. The criticality within the 

introduced software system may be greater than the COTS software’s original intent and design, 
leaving the new system incompliant to security standards. 

 
Re-use and legacy code could use outdated packages and libraries with later found vulnerabilities, 

which could cause the software system to be at risk. During development and production, the 
software could have been adhering to the security standards of its era, but as time progresses, more 

vulnerabilities are discovered. 
 

With these three categories of software, it is necessary to validate if they adhere to basic or 
corporate security standards. If not, re-use software and FOSS should be modified and adapted. 

One way to determine if software adheres to standards is to conduct static analysis and dynamic 
testing on the code (refer to section 4). The software should also be checked to certify if its 

maintained, otherwise, maintenance procedures should be adopted, when possible (refer to section 
5).  

 
Using an automated tool to manage FOSS can help determine if it is maintained and notify when 

a vulnerability is discovered. Tools that perform open-source dependency checks, also sometimes 
called software component analysis (a.k.a. software composition analysis or origin analysis) can 

help to ensure a project understands all of the open-source packages it is using, the versions of 
those packages, and reported vulnerabilities with those packages. Software developers should keep 

all of their included open-source packages in a single location which makes it easy to see what 
packages are in use in the project. Many open-source projects provide a cryptographic hash which 

can be used to ensure the downloaded version has not been tampered with. A basic check for 
programs should be to regularly reference the National Vulnerability Database (NVD) for all of 

the software packages, open source and commercial, in use (National Vulnerability Database, 
n.d.). The NVD assigns a Common Platform Enumeration (CPE) for each software package and 

version and allows users to search for all reported vulnerabilities for each CPE. The NVD assigns 
criticality ratings to each vulnerability that programs can use to assess the risk to their project. For 

larger software development efforts, a software component analysis tool may be helpful.  
 

Supply chain source rise is worth considering within space systems due to the high value of assets 
in those systems. FOSS packages must be obtained from trusted sources/servers, but FOSS projects 

sometimes include thousands of developers from multiple countries. Missions should consider the 
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risk of vulnerabilities intentionally inserted into software they use; there have been reported cases 

of potentially malicious code being inserted into FOSS software repositories (Goodin, 2017).  

5.4 SOFTWARE	BILL	OF	MATERIALS 	
The identification of FOSS or third-party code is becoming more important and more standardized. A 
“Software Bill of Materials” (SBOM) is effectively a nested inventory, a list of ingredients that make up 
software components. As stated by National Telecommunications and Information Administration (NTIA), 
“Most software depends on third-party components (libraries, executables, or source code), but there is very 
little visibility into this software supply chain. It is common for software to contain numerous third-party 
components that have not been sufficiently identified or recorded. Software vulnerabilities are both the 
byproduct of the human process of developing software and the increasingly frequent target of attacks into 
the software supply chain. If users don’t know what components are in their software, then they don’t know 
when they need to patch. They have no way to know if their software is potentially vulnerable to an exploit 
due to an included component – or even know if their software contains a component that comes directly 
from a malicious actor. The reality is this: when a new risk is discovered, very few organizations can quickly 
and easily answer simple, critical questions such as: “Are we potentially affected?” and “Where is this piece 
of software used?” This lack of systemic transparency into the composition of software across the entire 
digital economy contributes substantially to cybersecurity risks as well as the costs of development, 
procurement, and maintenance.” (NTIA, n.d.) 

SBOM operates under a standard pillar of cybersecurity, 
identification of assets (i.e., inventory) but it extends the idea 
to the minute level of detail similar to the nutritional facts on 
food products. You want to know all the ingredients to include 
breaking down items often referred to as “proprietary blend”. 
From a cybersecurity perspective, security by obscurity has 
never truly sufficed therefore gaining the insight into every 
aspect of the software composition is critical moving forward. 

SBOM is undergoing a standardization process where the level 
of detail and contents of the metadata are being decided. There 
are currently three formats available which are variations of 
XML: SWID, SPDX, CycloneDX. It is likely one format will 
ultimately become the gold standard. The metadata/fields and 
format are important as that enables automation, scalability, 
and integration. NTIA published baseline SBOM that includes 
components in their assembled relationship. Each component 
has enough information to “uniquely and unambiguously 
identify” it (left), and the relationship of what upstream or child 
components are “included in” downstream or parent components (right) as depicted in the below figure. 

 

 

 

 

 

FIGURE 10: NUTRITIONAL FACTS 
EXAMPLE 
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  FIGURE 11: NTIA BASELINE SBOM 

 

One example of an entity taking NTIA guidance and starting to standardize the format and fields is 
Microsoft who adopted the SPDX format as their standard as depicted below.   

 

  FIGURE 12: MICROSOFT PUBLISHED SPDX FIELDS  

 

SBOM has multiple use cases and as the approach and technology progresses additional use cases could be 
discovered. The below graphic provides a snapshot in time on today’s known use cases for SBOM. All of 
these would apply to space systems. 
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FIGURE 13: SBOM USE CASES  
 

 

 

5.5 COMPILATION	GUIDELINES 	
In compiled languages, most compilers offer various compile-time options in order to harden the 

final compiled binaries against potential attack vectors. Even if the code contains a potential attack 
vector, certain compiler options will help prevent loading of arbitrary code or libraries to help limit 

the damage caused. These options are often platform and language dependent, so portability must 
be considered for cross-platform projects, even when using the same toolchain even. 
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Due to the extra resources consumed to perform runtime checks for the various forms of protection 
offered, a consideration to take when using these compilation flags is that the features designed to 

harden the compiled code may cause measurable performance degradation. 
 

The GNU Compiler Collection (GCC) provides various compiler flags to help mitigate potential 
memory-based attacks on compiled code. The most common flags are as follows: 

 

  GCC: -fstack-protector 
  Visual Studio: /GS 
  Clang: -fsanitize=<option> 

 

The stack protector keeps an application’s stack in check and causes the program to self-terminate 
if any stack tampering is detected. There are multiple levels of this flag for the GCC variant, as 

appending “-all” to the end of the above flag will wrap stack protection around all possible 
functions, even if not strictly necessary. There is also a “-strong” variant of the flag that balances 

the stack protection of the compiler with speed. 
 

  -fstack-clash-protection 

 

This GCC flag attempts to prevent stack clashing attacks by only allocating a limited amount of 

memory at a time. 

  -D_FORTIFY_SOURCE=# 

 
This option will fortify any compiled code against buffer overflows when using certain C memory 

functions. There are two levels of checks that the flag can be set to, 1 or 2, where 1 consists of the 
safer checks that are guaranteed to not disrupt the program’s flow. Level 2 of this flag runs more 

checks but may affect how some programs run. 

 

For Microsoft’s Visual Studio compilers, the stack protector is enabled by default. With Clang, 
the AddressSanitizer code instrumentation suite is built into the compiler, allowing the flag shown 

above (when used with the options “address” or “bounds”). 

5.6 AUTHENTICATION	AND	PASSWORD	MANAGEMENT 	
Space mission software often relies on authentication mechanisms in order to limit access to 

authorized individuals. Best practice is to use multi-factor authentication or two-factor 
authentication whenever possible. Multifactor authentication does not completely secure a system, 

but it slows down an adversary by making it significantly harder for them to gain initial access to 
a system. When password authentication must be used by itself, the systems should enforce 

password complexity, length, expiration, and history requirements. In practice, these requirements 
may not be sufficient. It is easy for users to create passwords which follow keyboard patterns that 

meet the complexity requirements but are easy to guess for adversaries that know common 



 
 

42 
 

patterns. The purpose of enforcing password complexity and length requirements is to make it 
difficult for adversaries to find passwords by brute-force guessing if they obtain a set of password 

hashes via a system breach. Obtaining the cleartext passwords often allows them to escalate their 
initial access to other parts of the system or administrator access. Microsoft explains why long 

passwords are more secure than complex passwords in a blog post (mstfcam, 2015). Long 
passwords may be easier for users to remember too: they can use phrases of English words that 

are easy to remember but are still difficult for adversaries to brute-force guess. Enforcing password 
expiration and history is important too because if an adversary obtains a password, its useful 

lifetime should be short. 

6 ANALYSIS	TOOLS	AND	TECHNIQUES	
6.1 STATIC	ANALYSIS 	
Static analysis is the analysis of software without executing the code. This can range from 
essentially fully building the software to merely parsing the code “fuzzily” without the need of any 

dependencies or build tools. Most static analysis tools provide insights into the codebase through 
additional metrics and attempt to detect many kinds of issues with the code, including many of the 

aforementioned CWEs. A well-known, fundamental introduction to the techniques of static 
analysis can be found in (Allen & Cocke, 1976). 

 
Static analysis can be useful in situations where the build environment of the software is not 

available to a reviewer, or to enforce coding standards that are not necessarily enforced by a 
compiler (such as organizational or stylistic choices). Static analysis is very useful early in 

development when the size of the codebase is small – the analysis will be quicker, and it is easier 
to establish a foundation for continued analysis. Many tools can have subsequent analyses 

automatically ignore known false positives and are also able to track changes in the amount of 
detected vulnerabilities over different builds. Just like managing an inbox, it is usually easier to 

deal with findings as they crop up early in development instead of deal with them all at once at the 
end of a project’s development cycle. With a baseline of stylistic coherence and coding practice 

enforced by static analysis, any quality assurance processes such as code review can focus on the 
detection of more subtle errors. 

 
Static analysis cannot know anything about the software that is determined at runtime. This makes 

static analysis less capable of reliably detecting classes of issues such as memory leaks, incorrect 
calculations, and divisions by zero. Many of these issues are detectable statically but require the 

use of computationally expensive methods such as abstract interpretation1. Tools that can do so 
are often highly specialized and more expensive than generalist ones. 

Static analysis is unfortunately not a magical automated safety net against human error. Due to the 
comparative lack of context compared to dynamic testing, static analysis is very prone to false 

positive findings. Depending on a given tool’s approach to the analysis, false positives can 
comprise an overwhelming majority of the results, making it necessary to have an engineer review 

 

 
1 Abstract Interpretation is a theory of approximation of mathematical structures, in particular those involved in the semantic 
models of computer systems (Cousout, 2005). It is often used to prove or certify software against certain kinds of runtime errors. 
 



 
 

43 
 

the results and separate the real findings from the chaff - a potentially extremely time-consuming 
task depending on the rigor of the tool used and the size of the codebase. Despite the propensity 

of static analysis to produce false positives, it is also still possible for some security vulnerabilities 
to pass through undetected. 

6.1.1  TOOL	CHOICE 	
Perhaps the most important factor in static analysis tool choice is compatibility with the system’s 

languages. While some static analysis tools are polyglottic, others are specialized to work with 
only one or a few given languages. A combination of tools may be necessary to cover all the 

components of the software. 
 

An important consideration in choosing a static analysis tool should be the class of issues that 
impact the software the most. For example, a system that will often handle untrusted input (such 

as a form entry web application) will find it useful to focus on detecting Data Processing Errors 
(CWE-19), many of which concern the mishandling of untrusted input which can lead to code 

injection vulnerabilities. A system with a defined set of inputs would most likely not benefit from 
such scans and might instead benefit more from focusing on logic errors.  

 
Some tools are better at covering certain CWEs than others. As part of building a 

development/assurance pipeline it will require a combination of complementary tools. The tools 
listed below addressed a high percentage of the most critical CWEs mentioned in Section 5.2 and 

Appendix A; however, this list is merely a snapshot in time and a non-exhaustive list. The listing 
of these tools does not imply endorsement as the list is for informational purposes only. 

 
TABLE 4 CWE COVERAGE OF STATIC ANALYSIS TOOLS 

Programming Language and System Combination of Tools to Identify CWEs 

C/C++ Ground Systems 

CodeSonar 

Fortify 
Parasoft C/C++ 

Klocwork 
CheckMarx 

Coverity 

Java Ground Systems 

Grammatech CodeSonar 

Fortify 
Parasoft Jtest 

Klocwork 
Spotbugs 

CheckMarx 
Coverity 

C/C++ Flight Systems 
 

Fortify 
CodeSonar 

Klocwork 
Checkmarx 

Coverity 
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6.1.2  SCANNING 	
Static analysis can be time consuming, so it is important with large codebases to only scan code 

that pertains to the system proper and has the potential to raise new findings, such as code that is 
freshly written or old code that interacts with new code. Test code usually need not be scanned at 

all. 
 

The frequency of scanning depends on how quickly scans can be performed. For something as 
basic as a style check, it is doable every time a developer commits and pushes code. For more in-

depth analyses that take on the order of minutes or hours, it might make more sense to integrate it 
into a nightly build cycle or other continuous integration toolchain. Best practice is to have the 

analysis occurring nightly or on every commit/merge into the baseline. 
 

The static analysis tool should be configured as appropriately as possible. If present, the tool should 
have access to the same libraries the code will in production. The tool should be configured to use 

the same compiler standards as the target. Some static analyzers can still perform a limited analysis 
with missing libraries, but it is recommended that the environment the static analyzer work with 

be as close to production as possible. Many C/C++ codebases are required to be compiled to even 
do the static code analysis, therefore integrating into the build process is key.  

 
While static analysis can generate worthwhile findings about a codebase, it is important to 

adjudicate the findings efficiently and have a consistent strategy for dealing with fixes or 
mitigations. Every finding should undergo a risk assessment to determine what course of action 

should be taken to deal with it. 
 

Whether or not a static analysis finding is a false positive is the first matter of concern. Only when 
this has been determined by a reviewer can its criticality be determined. The criticality of a finding 
is the next most important factor to consider. Criticality can be considered a combination of the 

likelihood of the bug being triggered in production and the effects of the bug on the goal of the 
mission. Depending on the stage of development at which the finding arises, it can be prohibitively 

costly to implement a fix or workaround. However, if the bug is unlikely enough, benign enough, 
or both, then it may not pose a great enough risk to the mission to warrant spending more budget 

fixing it.  
 

It is useful to classify vulnerabilities according to a defined set of criteria when determining their 
criticality and what action to take. There are several criticality scales and each tool has their own 

criticality scale. There are scales like OWASP Top 10, SANS Top 25, as well as operational 
discrepancy categories which have be adapted for a software context (U.S. Air Force, 2015). For 

example, the discrepancies or defects are organized by Category (1 or 2) and Priority (Emergency, 
Urgent, or Routine). Category 1 discrepancies have no acceptable workaround, while category 2 

discrepancies do. Emergency defects are generally most severe and involve life-critical and/or 
safety-critical weaknesses, while Urgent defects affect operational capability to a lesser degree. 

Routine defects are merely inconvenient and involve some compensation by the users of the 
software.  

 
Using predefined criticality scales typically do not consider operational context of the specific 

mission. Therefore, it is recommended to develop a mission specific prioritization. One method of 
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performing this prioritization is leveraging CWEs and performing a mission specific prioritization 
using something like common weakness scoring system (CWSS). The CWSS is an ongoing effort 

by MITRE to provide a mechanism for prioritizing software weaknesses in a consistent manner. 
A modified version of CWSS was used to prioritize CWEs for both ground and spacecraft listed 

in Appendix A. The list in Appendix A was curated considering the nuances of the operational 
environment for ground systems and well as spacecraft. Developers tend to rely on the weakness 

ranking subjectively outputted by MITRE or the various scanning tools used to check code. The 
problem is these tools do not have the necessary knowledge of space systems to determine which 

weaknesses are more or less important to mission. Appendix A can be used as reference, but 
ultimately the mission owner should perform their own prioritization given their mission context 

and risk tolerance. The list in Appendix A is in order of priority from highest to lowest, but all the 
listed 386 CWEs are considered high priority (i.e., priority one CWEs) for space systems but they 

are listed in descending priority order.  
 

When addressing potential software vulnerabilities in a system, it is important to follow a defined 

process that combines the following: 

1. Organized risk assessment (during which static analysis generates findings) 

2. Communication and feedback with the engineering team (where they may be made aware 
of or clarify any findings, such as additional context on possible false positives) 

3. Addressing residual risks and mitigation plans after changes are implemented 

 

This is just one example of a review process incorporating static analysis. It sets up a good 

feedback loop in the context of static analysis whereby the findings are treated appropriately and 

systematically and can be used to establish a flow for tracking metrics on vulnerabilities and false 

positives detected over time. Most importantly, it ensures that findings are worked through with 

due consideration and minimizes the number of vulnerabilities that slip through. 

6.1.3  THIRD	PARTY	CODE	ANALYSIS 	
It is highly recommended the developers perform their own static analysis using automated tools 

looking for coding standard deviation and code weaknesses/vulnerabilities. However, third party 
reviews often take place as well. These should be performed in tight coordination with the 

development organization. Third part reviews should aspire to utilized different analysis tools than 
the development organization, in addition to peer reviewing/validating the developer’s usage of 

automated tools. Oversight is often needed as developers may accept risk or elect to not resolve a 
defect that could lead to mission impact.  

 
For third party reviews, it is important to consider the developer’s possible reasoning behind 

writing software a certain way when examining a static analysis finding. Even an ostensibly serious 
finding such as the use of functions vulnerable to buffer overflow needs to be contextualized – the 

developer may have taken steps to manage the risk involved in using those functions to meet a 
performance requirement, for example. Communication with the originating developers is very 

important in ensuring that third party reviewers know the standards to which the developers work. 
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6.1.4  ANALYSIS	W ITHOUT	SOURCE	CODE 	
Scanning source code or performing manual review is required in order to identify findings that 

may be exploited and expose the system, placing systems and data at risk. There are many types 
of scans that detect potential vulnerabilities, among them static code analysis is the method that 

provides a more comprehensive and thorough look at the risk posture of software. Access to the 
source code is required when static code analysis is performed to identify the potential 

vulnerabilities and to examine them after the scan to determine exploitability and risk. Sometimes 
the users of the software do not have access to the source code, and they do not have a clear picture 

on vulnerabilities that exist in the code when they use the software.  
 

Missions often purchase commercial software with no data rights due to budget constraints or other 
contractual considerations. In the era where cyber threats only become more sophisticated this 

presents a security loophole that can have catastrophic consequences, leaving the mission without 
visibility of the software’s assurance posture. Lack of data rights for newly acquired systems is 

only part of the problem, access to code is also not be possible on legacy systems.   
 

There are tools that perform binary analysis on installers and executable files where we do not 
have access to the source code. The problem with these tools is that the technology is immature 

and usually the results are vulnerabilities in the assembly language. To evaluate assembly language 
vulnerabilities requires specialized skills and knowledge that is not widely available.  Even with 

knowledge available it takes time to assess the vulnerabilities, preventing these methods from 
scaling to the large amount of COTS software used.  The reverse engineering required for these 

approaches may also be illegal for some software due to provisions within the terms of service or 
software license. 

 
As a result, mission owners are left without many options regarding COTS software vulnerability 
analysis, and there are no standards and guidance on the process that needs to be followed to 

provide the assurance that the software is safe to purchase and use. The options available currently 
to find potential vulnerabilities in software that do not have source code are to: 

• Perform binary analysis on custom code: As discussed above specialized skills and reverse 
engineering are required to be able to assess the vulnerabilities. This type of analysis is 

immature and generates a lot of false positive results, but it does possess the ability to 
discover zero-days or unknown-unknowns. In addition, it covers only a fraction of the 

vulnerabilities that may exist in the source code and critical findings may be missed 
resulting in increased security risk. 

• Perform Software Composition Analysis: This is a more mature technology and can 
successfully identify third party components residing in the code base. The technology will 
list any CVEs associated with the components and will provide a lot of other useful 

information such as applicable software licenses. Composition analysis may identify third 
party libraries and some commercial software used including their version and existing 

well know vulnerabilities associated with the version.  This method does not identify the 
vulnerabilities in custom code that is not provided by a third party, or in cases where the 

third-party library is not recognized by the composition analysis tool(s) being used. This 
method of analysis can only detect the known-knowns within the software vice zero-days.  

• If the user of the software does not have access to the code to check for potential 
vulnerabilities and does not have the ability to perform either binary of software 
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composition analysis, then the decision is made to accept or not the software with the 
unknown risk related to security posture of the software. 

 

6.1.4.1 BINARY	ANALYSIS 	
Binary code analysis, also referred to as binary analysis, is threat assessment and vulnerability 

testing at the binary code level. This analysis analyzes the raw binaries that compose a complete 

application, which is especially helpful when there isn’t access to the source code. Because a 

binary code analysis evaluates stripped binary code, software can be audited without vendor or 

coder cooperation. It can also be used to analyze third-party libraries, allowing a richer analysis 

and better visibility into how applications will interact with libraries. 

 

Binary analysis requires specialized skills to understand the results that are usually in assembly 

language. It is a time-consuming effort, and the results of the effort are hard to translate into a 

high-level language to pinpoint where in the code the vulnerability resides. The reverse 

engineering that is required to understand the results may be illegal depending on the data rights 

related to the software that is examined. This method is like standard static code analysis, there is 

expertise necessary to effectively perform binary analysis. Various tools have differing levels of 

skill to deploy and execute against binaries. There is no “one tool” or ”set it and forget it” when 

performing binary analysis. Interpreting the results takes knowledge of software development, 

assembly, various hardware architecture platforms (ARM, PPC, MIPS, SPARC, x86_64) as well 

as various operating systems (VxWorks, RTEMS, Linux, Windows). 

 

If vulnerabilities are found during binary analysis the vulnerability report can be presented to the 

owner of the software with the request to fix them before software acceptance. Areas of 

consideration when performing binary analysis are the software operating environment and file 

types available; these will determine the tools used and the analysis performed. 

 

6.1.4.2 SOFTWARE	COMPOSITION	ANALYSIS 	

Component Analysis is the process of identifying potential areas of risk from the use of third-party 

and open-source software and hardware components. Component Analysis is a function within an 

overall Cyber Supply Chain Risk Management (C-SCRM) framework. A software-only subset of 

Component Analysis with limited scope is commonly referred to as software composition analysis. 

 

Software Composition analysis is a mature technology that provides valuable information related 

to the open-source components and third-party libraries that are found in the software. The 

information usually includes CVEs, software version, license types etc. 

 

6.1.4.3 MALWARE	ANALYSIS 	

Modern antivirus software can protect users from: malicious browser helper objects (BHOs), 

browser hijackers, ransomware, keyloggers, backdoors, rootkits, trojan horses, worms, malicious 
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LSPs, dialers, fraud tools, adware, and spyware.  Some products also include protection from other 

computer threats, such as infected and malicious URLs, spam, scam and phishing attacks, online 

identity (privacy), online banking attacks, social engineering techniques, advanced persistent 

threat (APT) and botnet DDoS attacks. 

 

In addition to signature-based malware detection methods, there are sandboxing environment that 

are freely available to enable a more behavioral analytics approach. Software solutions like 

Cuckoo Sandbox (Cuckoo) and Assembly Line (ASL) can provide this sandboxing environment. 

If the software is not sensitive, VirusTotal (VT) provides a mechanism to submit binaries for free 

which analyses the software using over 70 virus scanning solutions at once. 

 

6.2 DYNAMIC	TESTING 	
Dynamic testing has proven valuable in industry for finding defects and security weaknesses in 

code. Microsoft uses an internally-developed dynamic testing tool called SAGE to test Windows 
and Office software. Microsoft reported SAGE had consumed 100+ computer-years and found 

hundreds of bugs (Godefroid, From Blackbox Fuzzing to Whitebox Fuzzing towards Verification, 
2010). Microsoft noted that SAGE typically runs last in their testing pipeline, meaning it found 

bugs that all of the other testing methodologies such as static analysis had missed (Godefroid, 
Levin, & Molnar, SAGE: Whitebox Fuzzing for Security Testing, 2012). Stanford developed a 

tool called KLEE which they used to test 452 programs from the core Unix utilities and found 56 
serious bugs (Cadar, Dunbar, & Engler, 2008). Dynamic testing was used extensively at the 

DARPA Cyber Grand Challenge in 2016: at least two of the top teams, ForAllSecure and 
Shellphish, used a combination of dynamic testing techniques (Defense Advanced Research 

Projects Agency, n.d.), (Avgerinos, et al., 2018), (Shoshitaishvili, et al., 2016). 
 

Dynamic testing discovers flaws that appear at runtime by running a compiled binary with unusual 
inputs. It attempts to cause undesired effects such as crashes or hangs by inducing conditions that 

were not anticipated by the developers. Dynamic testing complements static code analysis: 
dynamic testing tends to find certain types of flaws more readily than static analysis. Two good 

examples are buffer overflows and use-after-free weaknesses. Static analysis tools have a difficult 
time determining the size of buffers that are allocated at runtime, and so they do not always 

correctly flag buffer overflows. They also have a difficult time tracing complex execution paths 
between memory allocation and corresponding memory free operations, and so they often cannot 

correctly flag cases where the software will use a pointer after the memory has been freed (use-
after-free). Dynamic testing can discover these flaws at runtime by executing the code and looking 

for memory errors that indicate one of these defects. 

Dynamic Analysis encompasses a variety of techniques: 

• Manual or semi-automated testing (i.e., penetration testing) using an execution 
environment (i.e., high-fidelity simulator or with hardware-in-the-loop environments). 

– In addition to traditional penetration testing techniques, automated vulnerability 

scanning would reside within this technique 

• Traffic analysis: while not technically dynamically executing the software under test, 
traffic analysis (i.e., protocol analysis or radio frequency analysis) requires the software to 
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be executing so the tester can analyze the incoming and outgoing traffic. This is common 
approach for intrusion detection systems on a traditional network where it analyzes the 

packets on the network 

• Symbolic execution: use theorem provers to find weaknesses in binary code 

• Sanitizers: instrument code to show violated conditions (e.g., buffer overflows) 

• Fuzzing: send random inputs to a program to see if they crash the application 
 
A widely used type of dynamic testing is called fuzzing. Fuzzing generates random inputs for the 

program to bypass input validation or programmer assumptions and cause the program to crash. 
For example, if the programmer assumed input would always be alphanumeric characters, fuzzing 

may cause a crash by sending a character outside of those bounds. Symbolic or concolic execution 
builds a representation of program execution as a series of logical statements, then uses a theorem 

prover to decide whether certain security violations may occur. For example, a symbolic analyzer 
would start with a symbolic variable representing user input. It would then step through a program 

one CPU instruction at a time. At each instruction, it would add a logical statement representing 
that instruction’s operation on user input (i.e., addition, subtraction, logical operators). When it 

reaches an operation that could be a potential security weakness such as a possible buffer overflow, 
the theorem prover decides whether any possible input could result in a lookup outside the bounds 

of that array. Sanitizers instrument code to check security or various memory or thread safety 
conditions throughout execution. When they reach a point where the instrumentation detects a 

violation, they report that violation. For example, a memory allocation sanitizer would instrument 
all memory allocation and frees and report any memory leaks when the program terminates. 

A general diagram of the dynamic testing process is: 
 
FIGURE 14: EXAMPLE TESTING PROCESS 
 

 
 

The following sections describe each of those steps and useful tools in detail. 

6.2.1  PREPARING	FOR	DYNAMIC	TESTING 	
Dynamic testing typically requires more preparation and analyst effort than static analysis. This is 
because dynamic testing for most applications depends on the interfaces and structure of the 

application. Preparation should involve identifying the interfaces to test, choosing a testing 
strategy and tools, and writing test cases. 

6.2.1.1 IDENTIFY	INTERFACES 	
The first step in dynamic testing is to identify what interfaces to test. Dynamic testing should focus 
on interfaces that that accept input from users or across trust boundaries. Trust boundaries are 

interfaces to external or potentially untrusted sources of data. Some examples are file inputs from 
external systems, input fields in graphical user interfaces or web frontends, scripting engines, and 

network services. There are additional reasons to perform dynamic testing than discovering 
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security weaknesses: dynamic testing can discover bugs that would result in system crashes, 
potentially affecting the reliability of critical systems.  

There are many examples of defects or security weaknesses that dynamic testing has found in code. 
File inputs or parsers introduce potential weak points in code. For example, fuzzing discovered 

that malformed image files can cause crashes and possibly security issues by overflowing heap 
memory in the ImageMagick image processing library. (National Vulnerability Database, 2017) 

Fuzzing identified incomplete fixes to the Shellshock vulnerability reported in bash. (National 
Vulnerability Database, 2014)  

6.2.1.2 CHOOSE	A	TESTING	STRATEGY	AND	TOOL 	
There are different strategies and associated tools for dynamic testing. White box fuzzing 

instruments the code to measure how many branch paths are exercised. This requires compiling 
the source code with instrumentation in place. Black box fuzzing uses an unmodified binary but 

does not measure testing coverage. White box fuzzing tends to exercise many more branches 
through the code, and thus finds more defects. White box fuzzing is not always an option, however, 

especially in third party reviews, when testing legacy code without source, or when preparation 
time is limited. 

 
A mutational fuzzer, sometimes called a “dumb” fuzzer, modifies the input randomly without 

considering any knowledge of the underlying data structure. A generational or “smart” fuzzer uses 
a specification of the underlying data structure to make “smart” decisions about how to randomize 

the input. For example, a generational fuzzer may calculate CRC or checksum values where 
appropriate, whereas a mutational fuzzer would have to randomly find the correct value. 

Generational fuzzing should be used with care, however: a major reason to perform fuzzing is to 
test how a program reacts to unanticipated inputs, and the random inputs of a mutational fuzzer 

overcome any biases of the developers or testers. 
 

Microsoft studied different fuzzing strategies and found that a combination of white box and 
generational fuzzing discovered the most defects, but also required the most effort. (Neystadt, 

2008) Programs will need to determine the best strategy given risk tolerance and resources 
available.  

 
If fuzzing is not the dynamic testing strategy and the software is running on an embedded processor 

(e.g., PowerPC) then either a hardware in the loop or a high-fidelity simulator using an instruction 
set simulator could be used as the method the execute the test cases. 

6.2.1.3 WRITING	TEST	CASES 	
Dynamic testing requires test cases to exercise the code and find defects. Ideally, these test cases 

should target the identified interfaces and bypass as much other code as possible. For example, 
network servers often go through a process of loading configurations and starting services. If the 

identified interface is a single network listener, then a test case would include realistic 
configuration values but bypass as much of the server startup process as possible. If the code under 

test followed a unit test development methodology, those unit tests are often candidates for 
dynamic testing. For large monolithic software projects, however, creating test cases may mean 

extensive modifications to the source code if the project does not already have a thorough set of 
unit test cases. 
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There is sometimes a tradeoff between the amount of effort required to create test cases and how 

much testing can be performed: a large software package may be left as-is, minimizing the upfront 
work to prepare for dynamic testing, but dynamic tests will run slowly and will be less likely to 

discover issues because fewer tests can be run. 
 

Fuzzing tools and frameworks often use standard input to send random data to the program, and 
so test cases should accept input from standard input and pass it directly to the code under test. For 

example, a test case for a network service should bypass the normal mechanism to accept data over 
the network and accept that data from standard input instead. There are tools that can help with 

this process: for example, a tool called preeny automatically simulates network traffic by taking 
data from standard input (zardus, 2018). 

 
Some types of dynamic testing such as fuzzing require a seed input to start the randomization 

process. The seed could be a one-pixel image file for an image processing program, for example. 
The input seed speeds up the testing process by randomizing inputs from a valid starting structure. 

In the image example, without a seed, the fuzzer would have to randomly stumble on the structure 
of image files.  

6.2.2  FUZZING	TOOLS	AND	FRAMEWORKS 	
American Fuzzy Lop or afl-fuzz is a widely used and effective fuzzing tool for dynamic testing. It 

is developed by a Google security engineer and includes some sophisticated features to find as 
many defects as possible. If source code is available, afl-fuzz can instrument the binary during the 

compilation process to measure branch coverage. afl-fuzz uses a sophisticated mutational fuzzing 
approach. The fuzzer uses an algorithm resembling a genetic algorithm to find inputs that exercise 

as much of the code as possible. This is an improvement over purely random fuzzing because it 
will use inputs that exercise new execution paths to discover even more execution paths. afl-fuzz 
works on Linux with the gcc or llvm compilers. It expects test cases that receive input via standard 

input or via a file argument on the command line. It also requires some seed inputs to help start 
the fuzzing process. afl-fuzz can use a dictionary to help guide its inputs which speeds up 

exploration when the program under test expects certain key words (lcamtuf, 2017).  
 

Carnegie Mellon CERT provides another fuzzing framework called the CERT Basic Fuzzing 
Framework (BFF). BFF is a mutational fuzzer and provides many of the same features as afl-fuzz. 

It also provides some additional tools for call trace analysis and triaging findings (Householder, 
2018). 

6.2.3  SYMBOLIC	AND	CONCOLIC	EXECUTION 	
Symbolic and concolic execution tools are relatively new but are promising for finding runtime 

defects that fuzzing does not find. For example, fuzzing has trouble finding corner cases in the 
execution path that are highly unlikely using purely random input. These tools were used at the 

DARPA Cyber Grand Challenge by several of the top teams including the winner, ForAllSecure, 
who deployed their tool Mayhem. Symbolic execution runs software binaries through a CPU 

simulator which builds a symbolic representation (as a set of logical statements) of input and 
calculations as it executes. When the program reaches a point of interest, such as an index into a 

buffer, the symbolic analyzer uses a theorem prover to solve the symbolic representation and 
determine if any input could lead to security violations such as an index beyond the bounds of the 



 
 

52 
 

buffer. This is an extremely powerful method for analyzing software and can find rare corner cases 
that fuzzing misses with its random approach. Symbolic execution suffers from exponential path 

explosion, however. Each time the program branches such as at an if statement or loop, the 
symbolic analyzer must fork the symbolic representation and follow both paths. For analysis of a 

few thousand lines of code, this is feasible using current computing technology, but for complex 
programs it quickly becomes computationally intractable. Concolic execution, a mix of concrete 

and symbolic, helps speed up the process by executing some of the code directly without building 
a symbolic representation. Segments of the code which do not need to be analyzed such as initial 

configuration or library functions may be executed concretely, and only the portions of the code 
which perform calculations on program input are executed symbolically.  

 
There are several symbolic execution tools available for use in testing space ground software. 

ForAllSecure provides its Mayhem analysis as a service. (ForAllSecure, 2018) The University of 
California Santa Barbara provided their symbolic execution code called Angr as open source. (UC 

Santa Barbara, 2018). It is primarily intended for reverse engineering in cyber competitions but is 
also capable as a security defect analysis tool. It currently requires a significant amount of analyst 

effort to achieve results. 

6.2.4  MEMORY	AND	THREAD	SANITIZATION 	
Memory and thread analysis are valuable in a secure coding toolset, as they provide runtime-level 
detection of critical memory or thread-based errors that usually cannot be detected through static 

code analysis. While the following tools add overhead through adding their instrumentation 
frameworks at the binary level, the results these tools can provide are invaluable to find critical 

errors that can open serious attack vectors on a host system. 

Valgrind is a software tool for detecting incorrect memory usage and leaks at various points 

throughout the lifecycle of an application; during runtime, through the final return or termination 
statement. Valgrind is composed of multiple modules that combined, provide the ability to validate 
the memory of the application throughout its execution. As a result, it can be a valuable tool in 

detecting memory misuse or leaks that cannot or are not detected by static code analysis, as 

unexpected memory misuse can occur without detection. 

Valgrind is granular in its memory error detection, which allows the programmer to pinpoint the 
exact location in code the errors are occurring, when the code is compiled with debug symbols. 

The following code provides an example of Valgrind’s memory error detection capabilities, as 

well as the corresponding Valgrind runtime output: (Valgrind Developers, n.d.) 
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  #include <stdlib.h> 
 
  void f(void) 
  { 
     int* x = malloc(10 * sizeof(int)); 
     x[10] = 0;        // problem 1: heap block overrun 
  }                    // problem 2: memory leak -- x not freed 
 
  int main(void) 
  { 
     f(); 
     return 0; 
  } 

Source: (Valgrind Developers, n.d.) 

  ==19182== Invalid write of size 4 
  ==19182==    at 0x804838F: f (example.c:6) 
  ==19182==    by 0x80483AB: main (example.c:11) 
  ==19182==  Address 0x1BA45050 is 0 bytes after a block of size 40 
alloc'd 
  ==19182==    at 0x1B8FF5CD: malloc (vg_replace_malloc.c:130) 
  ==19182==    by 0x8048385: f (example.c:5) 
  ==19182==    by 0x80483AB: main (example.c:11) 

 

Valgrind also provides many core features, such as integrating with the GNU debugger (gdb), as 
well as various modules for other types of runtime errors, like helgrind and DRD for thread errors 

or SGCheck for detecting overrun memory in stack and global arrays. In general, the most common 

module the programmer will use in following secure coding guidelines is Memcheck.  

A suite of runtime sanitizers is available for compiled languages such as C or C++ through the 

LLVM project, which provides the Clang compiler.  

Another robust tool for detecting memory errors or misuse at runtime is AddressSanitizer, which 
is a proven tool for detecting common memory corruption errors in the heap, stack, or global 

memory, such as buffer overflows or use-after-free. Both of these memory bugs are possibly 
critical vectors for exploit that should be patched, as they may allow an attacker to reach outside 

the function bounds of the application (Google, n.d.).  

Additionally, AddressSanitizer has a complementary sanitizer component called LeakSanitizer 

that is able to detect memory leaks much like Valgrind’s complete instrumentation suite. Although 
normally instrumented into binaries with AddressSanitizer, to reduce load, the LeakSanitizer can 

instead just be linked against the code, which provides basic leak detection functionality.   



 
 

54 
 

ThreadSanitizer is a compilation-time dynamic testing tool that detects data races, which occurs 
when two threads attempt to access the same variable and run multiple operations on said variable. 

As a simple example, consider the following C++ code: 

int var; 
 
void Thread1() {  // Runs in one thread. 
  var++; 
} 
void Thread2() {  // Runs in another thread. 
  var++; 
} 

Source: (Google, n.d.) 
 
In this code, the two separate threads will access the global variable var, and as a result, running 

the application will likely result in an unexpected value for var. In general, thread-based data 
races are likely to be more subtle or unintended, so the use of ThreadSanitizer can help maintain 

data integrity (also see the section on race conditions). 

6.2.5  ANALYZING	AND	M ITIGATING	F INDINGS 	
Dynamic testing reveals inputs that cause undesirable effects such as crashing the program, but 
follow-up analysis is required to find where the program failed and where the most appropriate fix 

should be applied. A useful process for each finding is: 
 
FIGURE 15: ANALYZING FAULTS FROM TESTING 
 

 
 
Reproducing the fault is usually straightforward, although some faults may depend on some 

external state such as time or files. The first step is to ensure the fault is readily reproducible by 
the analyst. 

 
The next step is to determine the call trace leading to the fault. This will pinpoint the location in 

the program that experienced a fault, and all the functions and intermediate arguments between 
input and the fault. Debuggers are useful tools at this stage. On Linux platforms, the free GNU 

Debugger is a useful tool. On Windows, Microsoft provides debugging tools as part of the Visual 
Studio package. An excellent option for security analysis is the IDA Pro debugger. Memory 

checkers such as Valgrind and AddressSanitizer are useful during this step in the analysis because 
they reveal details about memory violations that occurred. Binary analysis frameworks such as 

radare2 may be useful as well (radare2, 2018). 
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The next step is to determine the priority to fix or mitigate the defect. This depends on the severity 
and likelihood of someone exploiting the defect. Analysts should consider what data source could 

induce the fault and how difficult it would be to induce the fault. Severity also depends on effects 
the fault could cause. Many faults lead to crashes or hangs, which affect the reliability of the 

software, but may not be useful for security violations. Memory write violations that affect the 
stack or heap are more serious and should be investigated as potential security issues. 

 
Finally, the analyst should determine the best mitigation or fix for the defect. The best fix is 

sometimes not the exact location where the fault occurred. If the fault resulted from invalid input, 
the best fix may be input validation early in the call trace. If the fault occurred in a library function, 

the best fix may be at the Application Programming Interface. Sometimes dynamic testing reveals 
several defects that are related by a single function call, in which case a fix in that function may 

solve many issues. 
 

6.2.6  TESTING	ENVIRONMENTS 	
Dynamic analysis can be performed using different types of environments: 

 

• Virtual, using instruction set simulators, virtual machines, or containers in a controlled 
environment. This maybe the cheapest and more scalable option that leaves a small 

footprint, but it requires virtualization expertise. The behavior of the system may not be 
exactly like the one in the physical environment. Snapshots, traffic captures and tool 

outputs are the evidence that can be used to assess the potential weaknesses. 

• Physical, this will be the exact duplicate of hardware, firmware, and software. It will 
include analysis of the equipment used. Using the physical environment is not as scalable 

as using a virtual environment and it has limited use and there are size restrictions. To build 
the replica of physical environment space considerations are important as well as cost. 

Storage of hard drives may become problematic and availability to clean hard drives too. 
The assessment will use evidence of traffic captures and dynamic analysis tools. 

• Hybrid, a combination of a virtual and physical environment to perform dynamic analysis. 
This approach is very common in forensics and it requires unique hardware, firmware, and 
software combinations. To build this approach a small lab is sufficient depending on unique 

HW/FW and the availability of clean hard drives for different events. The weaknesses with 
this approach can be assessed using the tools results, traffic captures and snapshots of the 

virtual environment.  
 

 

6.2.7  TARGETED	PENETRATION	TESTING 	
Penetration testing can find defects in a fully integrated, configured, and deployed system. Typical 

penetration testing uses tools and techniques to discover common vulnerable software and 
configurations. This is valuable for traditional networks that use mostly commercial and 

commonly available open-source software but does not adequately address systems with a large 
amount of custom software. For space systems that include custom or domain-specific mission 

software, it is recommended to target penetration testing that attempts to discover and demonstrate 
defects in the mission software.  
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Penetration testing should be performed by a team that is independent of the developers. It can be 
adversarial, where the penetration testing team is given limited information about the system and 

may not work with the developers, or cooperative, where the penetration testing team works 
closely with the developers to understand the system and discover its weaknesses. Adversarial 

testing is useful for understanding a system’s weaknesses to outside parties, but cooperative testing 
is more useful for discovering as many weaknesses as possible. 

The following diagram shows a target penetration testing process: 
 
FIGURE 16: EXAMPLE PENETRATION TESTING PROCESS 
 

 

 
 
Targeted penetration testing should use results from static and dynamic software analysis. Often 

the developers will rate an issue as low risk due to assumptions about how the software will be 
used, but penetration testers may find conditions in which that issue is higher risk than anticipated. 

If the system has performed a failure modes and effects analysis, those results should be used to 
highlight critical portions of the system. Both activities should come with an initial risk analysis 

for each finding. Penetration test planning should include rules of engagement such as portions of 
the system in scope, allowed tools and actions, and contact information for parties involved. The 

goals of the test should be discussed and agreed upon with system owners. For example, if the 
system owner is concerned about threat scenarios, those should be discussed and included in the 

test. High-level scenarios ensure the test will be realistic and produce useful results. For example, 
insider threat or network attack are two scenarios that may be used. Tools such as network scanners 

and scripting languages should be prepared. Finally, custom exploits may need to be developed to 
target weaknesses in the software. 

 
Penetration test execution follows a traditional model of scan, exploit, escalate, pivot, and repeat. 
There are many resources available to help train for and conduct a penetration test. The SANS 

Institute and Offensive Security both offer highly valuable training (SANS Institute, 2018), 
(Offensive Security, 2018). 

 
Finally, a follow-up risk analysis should be performed. This involves re-evaluating the initial risks 

given the findings of the penetration test. The results should be discussed with the developers and 
a plan for mitigating or fixing findings should be developed and implemented.  
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7 SOFTWARE	ACQUISITION	SECURITY	BEST	PRACTICES	
When acquiring software, it is key to ensure confidence in a system, that the system functions as 
intended, and that the system is free of vulnerabilities. Confidence regarding contractors’ 

assurance activities comes from obtaining appropriate information that a program office and others 
can understand and that supports the claims about the functionality of the software as well as the 

addressing of exploitable constructs in the system. The use of standardized collections of 
weaknesses, vulnerabilities, and attack patterns makes the understanding of contractors’ assurance 

actions easier and more consistent and offers opportunities for reuse of that approach to provide 
similar confidence in other systems needed and in other contractors. Confidence is built in the 

software system through static analysis, dynamic analysis, design inspection, attack surface 
analysis, threat analysis and modeling, code inspections, and penetration testing during the entire 

development process. Each of these activities identifies weaknesses and vulnerabilities in the 
software and its design and allows early correction at minimal cost and time. 

 
Determining whether a system “functions as intended” requires both showing through testing that 

the intended functionality is there and through test coverage and metrics understanding the system 
does not perform unrequired functions. As with the confidence measures discussed above, there 

are several points where insights into the risks and the mitigation of those risks regarding a 
system’s ability to “function as intended” can be obtained. We assert that the software functions 

as intended, and only as intended, through application of attack patterns/threat emulation, 
penetration testing, test coverage, and through the use of multiple-redundant implementations of 

critical elements by different suppliers and having the system failover to an alternate 
implementation. Each of these activities allows us to identify that the software is indeed 

functioning as intended without functioning, or being made to function, in unintended ways. 
 

As previously stated, it is common practice in industry to refer to the Common Weakness 
Enumeration (CWE) catalogue when assessing whether software is “free of vulnerabilities.” This 

approach allows others to understand both what was “looked for” and what was not but could have 
been “looked for.” Similarly, for commercial software packages (proprietary and open source) 

used as part of a system, the collection of publicly known vulnerabilities in these types of software, 
called the Common Vulnerabilities and Exposures (CVE) dictionary or the National Vulnerability 

Database (NVD), are almost always used as reference sources to determine if known issues have 
been mitigated. When trying to assert that the software is free of vulnerabilities by validating that 

those CVE and CWE items that are most dangerous to the mission are absent from the software 
and that the software operates at the least privilege required to complete its task. Therefore, 
contractors should be required to assure relevant and dangerous CVEs/CWEs are not present in 

the software. 
  

When software is being developed by a contractor, the system owner may be in a position of 
verifying the software security. In these cases, it is important to establish requirements, 

deliverables, and review milestones in ways that ensure high standards for secure coding. There 
are several requirements and deliverables that will help ensure secure coding practices. There 

should be a requirement that the contractor develops and delivers a secure coding guidelines 
document. That document should implement industry best practices for secure coding. Ideally, 

there should be a process for the government to review and request revisions to that document. 
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The contractor should provide a full delivery of all source code. The source code delivery should 
have everything needed to build the code including COTS and FOSS libraries, build scripts, and 

build instructions. This helps ensure maintainability but also enables independent static and 
dynamic testing. 

 
The contractor should perform static code analysis on a regular basis. Sending results of static 

analysis to developers quickly ensures the intent and use of the code is fresh in their minds, and it 
will be easy to see if they accidentally introduced a weakness that must be fixed. If the contractor 

uses a DevSecOps process, static and dynamic analysis tools should be part of the build pipeline. 
The results from the static analyzer should be reviewed regularly and shared with the government. 

The government should have a place on the contractor’s review board that adjudicates the security 
findings. The government should have a means to report its own security findings. 

 
The government should take an active role in scanning and testing the software deliveries. At major 

milestone deliveries, the source code should be independently scanned using the government’s 
choice of tools to ensure coverage of security categories described in section 5.2. The software 

should be dynamically tested, and penetration tested in a lab environment and replicates the 
operational environment as closely as possible. The end result of all this effort typically results in 

acceptance and certification from the system owner/government organization. 

8 SOFTWARE	SECURITY	AUTHORIZATION	AND/OR	CERTIFICATION		
Government organizations and commercial systems alike often leverage authorization and/or 

certification processes to gain confidence in a system and that the system is free of vulnerabilities. 
Software certifications are only as good as the criteria in which it is being certified against. Gaining 

an Authorization to Operate (ATO) in the context of a government information systems does not 
assure the system or software is free of vulnerabilities. The intention of these processes and 

certifications are meant to ensure that is the case or if the vulnerabilities present do not introduce 
too much risk. However, often times the outcome from the certification process does not garner 

the necessary technical analysis needed to make such claims. With software certification programs, 
it comes down to the standard in which it is being measured and what analytical methods are used 

to gain assurance to the standard. The point of this section is to merely articulate to not blindly 
accept software certification as the panacea. Request ample details on the criteria/rubric in which 

was used to certify the software as well as the evidence collected to validate the standard was met. 
Often times these certification processes are paperwork exercises that are not grounded in technical 

truth. Be cautious and leverage certification where possible, but do not blindly accept that if a 
software product was “approved for use” by one agency that it meets your standard as your risk 

profile may be different. The risk one mission owner is willing to accept is often different than 
what another mission owner will accept.  

9 MAINTENANCE	AND	SUSTAINMENT	
Technology is constantly changing, and to ensure security, software systems must be dynamic and 
adaptive to current technology and security practices. Software sustainment and maintenance are 

often used interchangeably, but the two entail different measures. IEEE Standard Glossary of 
Software Engineering Terminology defines software maintenance as “the process of modifying a 
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software system or component after deliver to correct faults, improve performance or other 
attributes, or adapt to a change environment.” Software sustainment represents “the processes, 

procedures, people, material, and information required to support, maintain, and operate the 
software aspects of a system.” (Lapham & Carol, 2006) The key difference is: maintenance is 

actively modifying the product, whereas sustainment represents the process and measures for 
securing software. 

9.1 VULNERABILITY	ASSESSMENTS 	
Regular vulnerability assessments and penetration tests are useful for discovering weaknesses in 
systems that may arise from misconfigurations, newly discovered vulnerabilities that have not been 

patched, and changes from configuration-controlled baseline. Vulnerability and penetration testing 
are used widely in commercial environments, and it is highly recommended for their use more 

widely within space systems due to their effectiveness.  
 

A penetration test is a type of security test meant to mimic a real-world attack. In a penetration 
test, cybersecurity professionals will breach computer network, execute exploits, and otherwise 

attempt to access as much information as possible. At the end of the test, a report is provided 
discussing the issues penetration testers have found as well as steps that must be undertaken to 

secure the system. 
 

A vulnerability assessment is performed with the cooperation of the system owners in a more 
cooperative fashion than a penetration test. In practice, vulnerability assessments are more 

effective at finding and demonstrating weaknesses than penetration tests. Due to the short 
timeframe typically allowed, cooperation with system owners to understand the system’s operation 

and obtain credentials leads to more productive testing. In this section, vulnerability assessment 
and penetration test will be used interchangeably.  

9.1.1  VULNERABILITY	ASSESSMENT	REQUIREMENTS 	
Before a test can begin, the scope of the test must be defined. For instance, certain systems may 
have sensitive data that the penetration testers should not view. If that is the case, the penetration 

tester shouldn’t be barred from accessing the system; instead, testers should be notified of what 
data can or cannot be accessed or dummy data secured in an identical fashion as the real data 

should be implanted for the penetration testers to attempt to access. 
 

The penetration tester should be provided the topology—a graphical overview of a computer 
network—to have the best results. A common misconception is that a genuine attacker would not 

have network topology at hand when performing their breach; however, an adversary will spend 
many months probing a network and developing a full topology before beginning their attack. On 

the other hand, a penetration tester will only have two weeks at most, hence providing topology is 
a requirement for the most realistic test. Additionally, even if attackers are unable to probe the 

system, espionage or data breaches can cause the original network topology to be leaked to 
attackers regardless of their ability to scan the network. 

9.2 COTS 	AND	FOSS 	 	
When choosing to integrate FOSS or COTS into software development, project managers must 
understand that they take responsibility for security weaknesses that may exist or arise in the future 

in those products. As mentioned in Section 3.3, corporate or government-based procedures may 
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not have been followed to the same standard as the company using the software. This could entail 
the company acquiring the software to provide additional measures to ensure that the FOSS or 

COTS product adheres to company production standards and qualifications. Though adopting a 
COTS or FOSS product into the software development cycle may reduce in-house development 

costs, extraneous measures are required to ensure the integrity and security of the external software 

product. 

Programs should include patch management in their maintenance and sustainment plan. The patch 
management plan should address all COTS and FOSS packages included in the system including 

complete software packages and libraries. Documenting and maintaining configuration control of 
the list of packages used within the system is essential to ensuring the patch management plan 

covers all the included software. For complex systems, there is software that can assist with patch 

management such as HEAT and Tanium (Ivanti software, n.d.), (Tanium Software, n.d.). 

As to determining the preference between using COTS versus FOSS in terms of sustainment and 
maintenance, there is no clear answer. Each option must be weighed depending on the needs 

specific software system as well as the needs of the company. COTS can lower development costs 
but increase maintenance costs. As opposed to in-house developed tools, COTS would require 

extra care in dealing with vendor relations of the COTS product. Its maintenance cost is determined 
security is composed of patching, robust testing, and its integration to company processes, 

protocols, and standards. Its sustainment is more complicated due to increased use of COTS 
software products. While the process for sustaining legacy software products is well defined, 

sustaining modern commercial software poses more complications. There are two main types of 
COTS: a COTS-solution system and COTS-aggregate system. The first describes a product or 

suite of products from a single vendor that can be altered to a customer’s needs, while the later 
entails multiple products developed from multiple vendors. COTS-solution software requires the 

developers to rely on one relationship with a vendor, whereas COTS-aggregate solutions require 
sustained relationships between multiple vendors. Relationships should be created with companies 

that have a great understanding of COTS maintained and sustainment, otherwise high risk is 
imposed on the company inheriting the COTS software. When dealing with sustainment, a 

company needs to consider how to manage potential system obsolesce, technology refresh, source 

code escrow, licensing management, and COTS-aggregate system architectures.  

In terms of maintenance, COTS cost includes patching, robust testing, adopting company 
development processes, protocols, and standards. Depending on the COTS, it may also have FOSS 

components that must be properly maintained. A maintenance plan should be discussed with the 
vendor to determine security measures done at their end. This plan should also factor in an intended 

lifeline of the software product inheriting the COTS, to ensure all external components will be 

sustained through the duration of the life of the product.  

FOSS is a unique and has its own measures for sustainment and maintenance. As FOSS is often 
done voluntarily by the efforts of many developers, security measures might fall mostly or 

completely on the organization. This would include, when source code is available, complete 
sustainment and maintenance done at the company level. Using software to manage software 

libraries and packages is particular useful in determining if is software is securely up-to-date, as 
most software patches fix security bugs (refer to section 3.3). While this does provide more control 

over the software product from a maintenance perspective, it also requires more work upon the 
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company. Some FOSS do have their own maintenance and sustainment procedures, and regularly 
provide patch updates. Each product needs to be evaluated individually in terms of maintenance 

and sustainment, as no FOSS product is treated equal to another. 
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APPENDIX	A: 	HIGH	PRIORITY	COMMON	WEAKNESS	ENUMERATIONS	
Research was performed at NASA’s IV&V Program, based on software analysis of many projects 
from various NASA centers. Throughout this research, the analysts have found certain types of 

flaws recurring in several different missions in high volume. To understand the flaws, it is 
important to first understand how they are labeled and categorized. MITRE has implemented a 

system to assign an ID (CWE_ID) to each weakness. This system of assigning IDs to weaknesses 
helps scanning tools easily identify and report whether a given weakness is present in the 

developer’s system. According to their site, CWE is: 
 
“…a unified, measurable set of software weaknesses that enables the effective discussion, 
description, selection, and use of software security tools and services that can find these 
weaknesses in source code and operational systems. The CWE also enables better 
understanding and management of software weaknesses related to architecture and 
design. It enumerates design and architectural weaknesses, as well as low-level coding 
and design errors.” 

 
The CWE lists hundreds of weaknesses. For each weakness, the site provides a definition, 

consequence of the weakness (one or more), detection methods, potential remediation advice, and 
a common weakness scoring system (CWSS) value. The CWSS is an ongoing effort by MITRE to 

provide a mechanism for prioritizing software weaknesses in a consistent manner. A modified 
version of CWSS was used to prioritize CWEs and are listed below. Some developers currently 

rely on the weakness ranking subjectively outputted by MITRE or the various scanning tools used 
to check code. The problem is these tools do not have the necessary knowledge of space systems 

to determine which weaknesses are more or less important to mission. A prioritization and 
categorization have been performed below. The domain applicability means if the CWE is a high 

priority CWE for either the ground system, spacecraft, or both. The list below is in order of priority 
from highest to lowest, but all the listed 386 CWEs are considered high priority (i.e., priority one 

CWEs) for space systems but they are listed in descending priority order. The CWE types (variant, 
base, class, etc.) are defined in https://cwe.mitre.org/documents/glossary/  

 
CWE ID CWE Name CWE Type Domain Applicability 
CWE-020 Improper Input Validation Class Spacecraft & Ground 

CWE-041 Improper Resolution of Path Equivalence Base Ground 

CWE-074 

Improper Neutralization of Special Elements in 
Output Used by a Downstream Component 
('Injection') Class Ground 

CWE-089 
Improper Neutralization of Special Elements used in 
an SQL Command ('SQL Injection') Base Ground 

CWE-098 

Improper Control of Filename for Include/Require 
Statement in PHP Program ('PHP Remote File 
Inclusion') Base Ground 

CWE-285 Improper Authorization Class Spacecraft & Ground 

CWE-078 
Improper Neutralization of Special Elements used in 
an OS Command ('OS Command Injection') Base Ground 
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CWE ID CWE Name CWE Type Domain Applicability 

CWE-079 
Improper Neutralization of Input During Web Page 
Generation ('Cross-site Scripting') Base Ground 

CWE-080 
Improper Neutralization of Script-Related HTML 
Tags in a Web Page (Basic XSS) Variant Ground 

CWE-059 
Improper Link Resolution Before File Access ('Link 
Following') Base Ground 

CWE-120 
Buffer Copy without Checking Size of Input ('Classic 
Buffer Overflow') Base Spacecraft & Ground 

CWE-094 
Improper Control of Generation of Code ('Code 
Injection') Class Ground 

CWE-302 Authentication Bypass by Assumed-Immutable Data Variant Ground 

CWE-088 Argument Injection or Modification Base Ground 
CWE-697 Incorrect Comparison Class Spacecraft & Ground 

CWE-095 
Improper Neutralization of Directives in 
Dynamically Evaluated Code ('Eval Injection') Base Ground 

CWE-119 
Improper Restriction of Operations within the 
Bounds of a Memory Buffer Class Spacecraft & Ground 

CWE-073 External Control of File Name or Path Class Ground 

CWE-642 External Control of Critical State Data Class Ground 
CWE-680 Integer Overflow to Buffer Overflow Chain Spacecraft & Ground 

CWE-311 Missing Encryption of Sensitive Data Base Ground 

CWE-096 
Improper Neutralization of Directives in Statically 
Saved Code ('Static Code Injection') Base Ground 

CWE-427 Uncontrolled Search Path Element Base Ground 

CWE-267 Privilege Defined With Unsafe Actions Base Ground 
CWE-312 Cleartext Storage of Sensitive Information Variant Ground 

CWE-350 
Reliance on Reverse DNS Resolution for a Security-
Critical Action Variant Ground 

CWE-276 Incorrect Default Permissions Variant Ground 

CWE-180 
Incorrect Behavior Order: Validate Before 
Canonicalize Base Ground 

CWE-093 
Improper Neutralization of CRLF Sequences ('CRLF 
Injection') Base Ground 

CWE-473 PHP External Variable Modification Variant Ground 
CWE-269 Improper Privilege Management Class Ground 

CWE-023 Relative Path Traversal Base Spacecraft & Ground 
CWE-190 Integer Overflow or Wraparound Base Spacecraft & Ground 

CWE-022 
Improper Limitation of a Pathname to a Restricted 
Directory ('Path Traversal') Class Spacecraft & Ground 

CWE-829 
Inclusion of Functionality from Untrusted Control 
Sphere Class Ground 

CWE-272 Least Privilege Violation Base Ground 
CWE-426 Untrusted Search Path Base Ground 
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CWE ID CWE Name CWE Type Domain Applicability 

CWE-118 
Incorrect Access of Indexable Resource ('Range 
Error') Class Spacecraft & Ground 

CWE-130 
Improper Handling of Length Parameter 
Inconsistency Base Spacecraft & Ground 

CWE-122 Heap-based Buffer Overflow Variant Spacecraft & Ground 

CWE-090 
Improper Neutralization of Special Elements used in 
an LDAP Query ('LDAP Injection') Base Ground 

CWE-425 Direct Request ('Forced Browsing') Base Ground 
CWE-129 Improper Validation of Array Index Base Spacecraft & Ground 

CWE-113 
Improper Neutralization of CRLF Sequences in HTTP 
Headers ('HTTP Response Splitting') Base Ground 

CWE-862 Missing Authorization Class Ground 

CWE-250 Execution with Unnecessary Privileges Class Ground 
CWE-400 Uncontrolled Resource Consumption Class Ground 

CWE-362 
Concurrent Execution using Shared Resource with 
Improper Synchronization ('Race Condition') Class Spacecraft & Ground 

CWE-116 Improper Encoding or Escaping of Output Class Ground 
CWE-131 Incorrect Calculation of Buffer Size Base Spacecraft & Ground 

CWE-270 Privilege Context Switching Error Base Ground 
CWE-181 Incorrect Behavior Order: Validate Before Filter Base Ground 

CWE-472 
External Control of Assumed-Immutable Web 
Parameter Base Ground 

CWE-294 Authentication Bypass by Capture-replay Base Spacecraft & Ground 

CWE-184 Incomplete Blacklist Base Spacecraft & Ground 

CWE-444 
Inconsistent Interpretation of HTTP Requests ('HTTP 
Request Smuggling') Base Ground 

CWE-602 Client-Side Enforcement of Server-Side Security Base Ground 

CWE-087 Improper Neutralization of Alternate XSS Syntax Variant Ground 
CWE-117 Improper Output Neutralization for Logs Base Ground 

CWE-084 
Improper Neutralization of Encoded URI Schemes in 
a Web Page Variant Ground 

CWE-805 Buffer Access with Incorrect Length Value Base Spacecraft & Ground 

CWE-303 
Incorrect Implementation of Authentication 
Algorithm Base Spacecraft & Ground 

CWE-352 Cross-Site Request Forgery (CSRF) Composite Ground 

CWE-384 Session Fixation Composite Ground 

CWE-692 Incomplete Blacklist to Cross-Site Scripting Chain Ground 

CWE-288 
Authentication Bypass Using an Alternate Path or 
Channel Base Spacecraft & Ground 

CWE-279 Incorrect Execution-Assigned Permissions Variant Ground 

CWE-306 Missing Authentication for Critical Function Variant Spacecraft & Ground 

CWE-732 
Incorrect Permission Assignment for Critical 
Resource Class Spacecraft & Ground 
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CWE ID CWE Name CWE Type Domain Applicability 
CWE-177 Improper Handling of URL Encoding (Hex Encoding) Variant Ground 

CWE-138 Improper Neutralization of Special Elements Class Spacecraft & Ground 

CWE-295 Improper Certificate Validation Base Ground 

CWE-733 
Compiler Optimization Removal or Modification of 
Security-critical Code Base Spacecraft & Ground 

CWE-415 Double Free Variant Ground 

CWE-833 Deadlock Base Spacecraft & Ground 
CWE-193 Off-by-one Error Base Ground 

CWE-330 Use of Insufficiently Random Values Class Spacecraft & Ground 

CWE-441 
Unintended Proxy or Intermediary ('Confused 
Deputy') Class Ground 

CWE-348 Use of Less Trusted Source Base Spacecraft & Ground 

CWE-368 Context Switching Race Condition Base Spacecraft & Ground 

CWE-565 
Reliance on Cookies without Validation and 
Integrity Checking Base Ground 

CWE-667 Improper Locking Base Spacecraft & Ground 

CWE-614 
Sensitive Cookie in HTTPS Session Without 'Secure' 
Attribute Variant Ground 

CWE-086 
Improper Neutralization of Invalid Characters in 
Identifiers in Web Pages Variant Ground 

CWE-081 
Improper Neutralization of Script in an Error 
Message Web Page Variant Ground 

CWE-282 Improper Ownership Management Class Ground 

CWE-770 Allocation of Resources Without Limits or Throttling Base Spacecraft & Ground 
CWE-185 Incorrect Regular Expression Class Spacecraft & Ground 

CWE-436 Interpretation Conflict Base Ground 

CWE-663 
Use of a Non-reentrant Function in a Concurrent 
Context Base Spacecraft & Ground 

CWE-287 Improper Authentication Class Spacecraft & Ground 

CWE-036 Absolute Path Traversal Base Ground 

CWE-863 Incorrect Authorization Class Ground 

CWE-297 
Improper Validation of Certificate with Host 
Mismatch Variant Ground 

CWE-665 Improper Initialization Class Spacecraft & Ground 

CWE-367 
Time-of-check Time-of-use (TOCTOU) Race 
Condition Base Spacecraft & Ground 

CWE-638 Not Using Complete Mediation Class Ground 

CWE-097 
Improper Neutralization of Server-Side Includes 
(SSI) Within a Web Page Variant Ground 

CWE-674 Uncontrolled Recursion Base Spacecraft & Ground 

CWE-290 Authentication Bypass by Spoofing Base Spacecraft & Ground 
CWE-196 Unsigned to Signed Conversion Error Variant Spacecraft & Ground 
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CWE ID CWE Name CWE Type Domain Applicability 

CWE-470 
Use of Externally-Controlled Input to Select Classes 
or Code ('Unsafe Reflection') Base Ground 

CWE-154 
Improper Neutralization of Variable Name 
Delimiters Variant Ground 

CWE-209 Information Exposure Through an Error Message Base Ground 

CWE-158 
Improper Neutralization of Null Byte or NUL 
Character Variant Spacecraft & Ground 

CWE-693 Protection Mechanism Failure Class Spacecraft & Ground 
CWE-128 Wrap-around Error Base Spacecraft & Ground 

CWE-301 Reflection Attack in an Authentication Protocol Variant Spacecraft & Ground 

CWE-428 Unquoted Search Path or Element Base Spacecraft & Ground 
CWE-798 Use of Hard-coded Credentials Base Spacecraft & Ground 

CWE-522 Insufficiently Protected Credentials Base Spacecraft & Ground 
CWE-346 Origin Validation Error Base Spacecraft & Ground 

CWE-300 
Channel Accessible by Non-Endpoint ('Man-in-the-
Middle') Class Spacecraft & Ground 

CWE-689 Permission Race Condition During Resource Copy Composite Ground 

CWE-412 Unrestricted Externally Accessible Lock Base Ground 
CWE-331 Insufficient Entropy Base Spacecraft & Ground 

CWE-676 Use of Potentially Dangerous Function Base Ground 
CWE-807 Reliance on Untrusted Inputs in a Security Decision Base Ground 

CWE-200 Information Exposure Class Ground 
CWE-314 Cleartext Storage in the Registry Variant Ground 

CWE-039 Path Traversal: 'C:dirname' Variant Ground 

CWE-434 Unrestricted Upload of File with Dangerous Type Base Spacecraft & Ground 
CWE-091 XML Injection (aka Blind XPath Injection) Base Ground 

CWE-476 NULL Pointer Dereference Base Spacecraft & Ground 
CWE-459 Incomplete Cleanup Base Ground 

CWE-772 Missing Release of Resource after Effective Lifetime Base Ground 

CWE-319 Cleartext Transmission of Sensitive Information Variant Spacecraft & Ground 
CWE-284 Improper Access Control Class Spacecraft & Ground 

CWE-315 
Cleartext Storage of Sensitive Information in a 
Cookie Variant Ground 

CWE-523 Unprotected Transport of Credentials Variant Spacecraft & Ground 

CWE-146 
Improper Neutralization of Expression/Command 
Delimiters Variant Spacecraft & Ground 

CWE-083 
Improper Neutralization of Script in Attributes in a 
Web Page Variant Ground 

CWE-502 Deserialization of Untrusted Data Variant Ground 

CWE-050 Path Equivalence: '//multiple/leading/slash' Variant Ground 

CWE-150 
Improper Neutralization of Escape, Meta, or 
Control Sequences Variant Spacecraft & Ground 
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CWE ID CWE Name CWE Type Domain Applicability 
CWE-662 Improper Synchronization Base Spacecraft & Ground 

CWE-271 Privilege Dropping / Lowering Errors Class Ground 

CWE-611 
Improper Restriction of XML External Entity 
Reference ('XXE') Variant Ground 

CWE-179 Incorrect Behavior Order: Early Validation Base Spacecraft & Ground 

CWE-028 Path Traversal: '..\filedir' Variant Ground 

CWE-691 Insufficient Control Flow Management Class Spacecraft & Ground 
CWE-327 Use of a Broken or Risky Cryptographic Algorithm Base Spacecraft & Ground 

CWE-134 Use of Externally-Controlled Format String Base Spacecraft & Ground 

CWE-099 
Improper Control of Resource Identifiers ('Resource 
Injection') Base Ground 

CWE-037 Path Traversal: '/absolute/pathname/here' Variant Ground 

CWE-241 Improper Handling of Unexpected Data Type Base Spacecraft & Ground 

CWE-416 Use After Free Base Spacecraft & Ground 
CWE-257 Storing Passwords in a Recoverable Format Base Ground 

CWE-521 Weak Password Requirements Base Ground 

CWE-318 
Cleartext Storage of Sensitive Information in 
Executable Variant Ground 

CWE-046 Path Equivalence: 'filename ' (Trailing Space) Variant Ground 

CWE-334 Small Space of Random Values Base Ground 
CWE-261 Weak Cryptography for Passwords Variant Ground 

CWE-038 Path Traversal: '\absolute\pathname\here' Variant Ground 

CWE-341 Predictable from Observable State Base Ground 

CWE-082 
Improper Neutralization of Script in Attributes of 
IMG Tags in a Web Page Variant Ground 

CWE-695 Use of Low-Level Functionality Base Spacecraft & Ground 

CWE-648 Incorrect Use of Privileged APIs Base Ground 
CWE-125 Out-of-bounds Read Base Ground 

CWE-262 Not Using Password Aging Variant Ground 

CWE-263 Password Aging with Long Expiration Base Ground 
CWE-187 Partial String Comparison Variant Ground 

CWE-062 UNIX Hard Link Variant Ground 
CWE-085 Doubled Character XSS Manipulations Variant Ground 

CWE-032 Path Traversal: '...' (Triple Dot) Variant Ground 
CWE-157 Failure to Sanitize Paired Delimiters Variant Spacecraft & Ground 

CWE-172 Encoding Error Class Spacecraft & Ground 

CWE-943 
Improper Neutralization of Special Elements in Data 
Query Logic Class Ground 

CWE-824 Access of Uninitialized Pointer Base Ground 
CWE-173 Improper Handling of Alternate Encoding Variant Spacecraft & Ground 

CWE-842 Placement of User into Incorrect Group Base Ground 
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CWE ID CWE Name CWE Type Domain Applicability 

CWE-338 
Use of Cryptographically Weak Pseudo-Random 
Number Generator (PRNG) Base Ground 

CWE-564 SQL Injection: Hibernate Variant Ground 

CWE-307 
Improper Restriction of Excessive Authentication 
Attempts Base Spacecraft & Ground 

CWE-681 Incorrect Conversion between Numeric Types Class Ground 
CWE-234 Failure to Handle Missing Parameter Variant Ground 

CWE-363 Race Condition Enabling Link Following Base Ground 

CWE-075 
Failure to Sanitize Special Elements into a Different 
Plane (Special Element Injection) Class Ground 

CWE-064 Windows Shortcut Following (.LNK) Variant Ground 
CWE-266 Incorrect Privilege Assignment Base Ground 

CWE-488 Exposure of Data Element to Wrong Session Variant Ground 

CWE-077 
Improper Neutralization of Special Elements used in 
a Command ('Command Injection') Class Spacecraft & Ground 

CWE-061 UNIX Symbolic Link (Symlink) Following Composite Spacecraft & Ground 

CWE-664 
Improper Control of a Resource Through its 
Lifetime Class Spacecraft & Ground 

CWE-640 
Weak Password Recovery Mechanism for Forgotten 
Password Base Ground 

CWE-042 Path Equivalence: 'filename.' (Trailing Dot) Variant Ground 
CWE-057 Path Equivalence: 'fakedir/../realdir/filename' Variant Ground 

CWE-370 
Missing Check for Certificate Revocation after Initial 
Check Variant Ground 

CWE-494 Download of Code Without Integrity Check Base Spacecraft & Ground 

CWE-539 Information Exposure Through Persistent Cookies Variant Ground 
CWE-603 Use of Client-Side Authentication Base Ground 

CWE-757 
Selection of Less-Secure Algorithm During 
Negotiation ('Algorithm Downgrade') Class Ground 

CWE-277 Insecure Inherited Permissions Variant Ground 
CWE-918 Server-Side Request Forgery (SSRF) Base Ground 

CWE-040 
Path Traversal: '\\UNC\share\name\' (Windows 
UNC Share) Variant Ground 

CWE-248 Uncaught Exception Base Spacecraft 
CWE-203 Information Exposure Through Discrepancy Class Ground 

CWE-033 Path Traversal: '....' (Multiple Dot) Variant Ground 

CWE-049 Path Equivalence: 'filename/' (Trailing Slash) Variant Ground 
CWE-055 Path Equivalence: '/./' (Single Dot Directory) Variant Ground 

CWE-291 Reliance on IP Address for Authentication Variant Ground 
CWE-015 External Control of System or Configuration Setting Base Spacecraft & Ground 

CWE-349 
Acceptance of Extraneous Untrusted Data With 
Trusted Data Base Spacecraft & Ground 
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CWE ID CWE Name CWE Type Domain Applicability 

CWE-006 
J2EE Misconfiguration: Insufficient Session-ID 
Length Variant Ground 

CWE-749 Exposed Dangerous Method or Function Base Ground 

CWE-147 Improper Neutralization of Input Terminators Variant Ground 
CWE-372 Incomplete Internal State Distinction Base Spacecraft & Ground 

CWE-321 Use of Hard-coded Cryptographic Key Base Ground 

CWE-299 Improper Check for Certificate Revocation Base Ground 
CWE-191 Integer Underflow (Wrap or Wraparound) Base Spacecraft & Ground 

CWE-656 Reliance on Security Through Obscurity Base Ground 
CWE-825 Expired Pointer Dereference Base Ground 

CWE-788 Access of Memory Location After End of Buffer Base Ground 

CWE-170 Improper Null Termination Base Spacecraft & Ground 
CWE-347 Improper Verification of Cryptographic Signature Base Ground 

CWE-916 
Use of Password Hash With Insufficient 
Computational Effort Base Ground 

CWE-144 Improper Neutralization of Line Delimiters Variant Ground 
CWE-908 Use of Uninitialized Resource Base Ground 

CWE-538 File and Directory Information Exposure Base Ground 
CWE-620 Unverified Password Change Variant Ground 

CWE-404 Improper Resource Shutdown or Release Class Ground 

CWE-707 
Improper Enforcement of Message or Data 
Structure Class Spacecraft & Ground 

CWE-328 Reversible One-Way Hash Base Ground 
CWE-326 Inadequate Encryption Strength Class Spacecraft & Ground 

CWE-706 Use of Incorrectly-Resolved Name or Reference Class Ground 
CWE-353 Missing Support for Integrity Check Base Spacecraft & Ground 

CWE-325 Missing Required Cryptographic Step Base Spacecraft & Ground 

CWE-013 
ASP.NET Misconfiguration: Password in 
Configuration File Variant Ground 

CWE-244 
Improper Clearing of Heap Memory Before Release 
('Heap Inspection') Variant Ground 

CWE-823 Use of Out-of-range Pointer Offset Base Spacecraft & Ground 

CWE-456 Missing Initialization of a Variable Base Spacecraft & Ground 

CWE-268 Privilege Chaining Base Ground 
CWE-259 Use of Hard-coded Password Base Ground 

CWE-197 Numeric Truncation Error Base Ground 
CWE-289 Authentication Bypass by Alternate Name Variant Ground 

CWE-424 Improper Protection of Alternate Path Class Spacecraft & Ground 

CWE-649 
Reliance on Obfuscation or Encryption of Security-
Relevant Inputs without Integrity Checking Base Ground 

CWE-822 Untrusted Pointer Dereference Base Spacecraft & Ground 
CWE-942 Overly Permissive Cross-domain Whitelist Variant Ground 
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CWE ID CWE Name CWE Type Domain Applicability 
CWE-140 Improper Neutralization of Delimiters Base Spacecraft & Ground 

CWE-124 Buffer Underwrite ('Buffer Underflow') Base Spacecraft & Ground 

CWE-065 Windows Hard Link Variant Ground 
CWE-029 Path Traversal: '\..\filename' Variant Ground 

CWE-035 Path Traversal: '.../...//' Variant Ground 
CWE-056 Path Equivalence: 'filedir*' (Wildcard) Variant Ground 

CWE-256 Unprotected Storage of Credentials Variant Ground 
CWE-838 Inappropriate Encoding for Output Context Base Ground 

CWE-366 Race Condition within a Thread Base Spacecraft & Ground 

CWE-601 URL Redirection to Untrusted Site ('Open Redirect') Variant Ground 
CWE-213 Intentional Information Exposure Base Ground 

CWE-233 Improper Handling of Parameters Base Spacecraft & Ground 
CWE-058 Path Equivalence: Windows 8.3 Filename Variant Ground 

CWE-407 Algorithmic Complexity Base Spacecraft & Ground 

CWE-305 Authentication Bypass by Primary Weakness Base Ground 
CWE-204 Response Discrepancy Information Exposure Base Ground 

CWE-510 Trapdoor Base Ground 
CWE-514 Covert Channel Class Ground 

CWE-915 
Improperly Controlled Modification of Dynamically-
Determined Object Attributes Base Ground 

CWE-027 Path Traversal: 'dir/../../filename' Variant Ground 
CWE-031 Path Traversal: 'dir\..\..\filename' Variant Ground 

CWE-034 Path Traversal: '....//' Variant Ground 

CWE-043 
Path Equivalence: 'filename....' (Multiple Trailing 
Dot) Variant Ground 

CWE-051 Path Equivalence: '/multiple//internal/slash' Variant Ground 
CWE-052 Path Equivalence: '/multiple/trailing/slash//' Variant Ground 

CWE-054 Path Equivalence: 'filedir\' (Trailing Backslash) Variant Ground 
CWE-296 Improper Following of a Certificate's Chain of Trust Base Ground 

CWE-176 Improper Handling of Unicode Encoding Variant Spacecraft & Ground 
CWE-114 Process Control Base Ground 

CWE-941 
Incorrectly Specified Destination in a 
Communication Channel Base Ground 

CWE-799 Improper Control of Interaction Frequency Class Ground 

CWE-940 
Improper Verification of Source of a 
Communication Channel Base Ground 

CWE-786 Access of Memory Location Before Start of Buffer Base Spacecraft & Ground 
CWE-178 Improper Handling of Case Sensitivity Base Ground 

CWE-149 Improper Neutralization of Quoting Syntax Variant Ground 

CWE-403 
Exposure of File Descriptor to Unintended Control 
Sphere ('File Descriptor Leak') Base Ground 
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CWE ID CWE Name CWE Type Domain Applicability 
CWE-911 Improper Update of Reference Count Base Ground 

CWE-841 Improper Enforcement of Behavioral Workflow Base Ground 

CWE-784 
Reliance on Cookies without Validation and 
Integrity Checking in a Security Decision Variant Ground 

CWE-754 
Improper Check for Unusual or Exceptional 
Conditions Class Ground 

CWE-358 
Improperly Implemented Security Check for 
Standard Base Ground 

CWE-219 Sensitive Data Under Web Root Variant Ground 

CWE-226 Sensitive Information Uncleared Before Release Base Spacecraft & Ground 

CWE-235 Improper Handling of Extra Parameters Variant Ground 
CWE-048 Path Equivalence: 'file name' (Internal Whitespace) Variant Ground 

CWE-525 Information Exposure Through Browser Caching Variant Ground 

CWE-593 
Authentication Bypass: OpenSSL CTX Object 
Modified after SSL Objects are Created Variant Ground 

CWE-304 Missing Critical Step in Authentication Base Ground 

CWE-005 
J2EE Misconfiguration: Data Transmission Without 
Encryption Variant Ground 

CWE-182 Collapse of Data into Unsafe Value Base Ground 
CWE-313 Cleartext Storage in a File or on Disk Variant Ground 

CWE-183 Permissive Whitelist Base Spacecraft & Ground 

CWE-258 Empty Password in Configuration File Variant Ground 

CWE-914 
Improper Control of Dynamically-Identified 
Variables Base Ground 

CWE-151 Improper Neutralization of Comment Delimiters Variant Ground 

CWE-409 
Improper Handling of Highly Compressed Data 
(Data Amplification) Base Spacecraft & Ground 

CWE-835 
Loop with Unreachable Exit Condition ('Infinite 
Loop') Base Spacecraft & Ground 

CWE-1004 Sensitive Cookie Without 'HttpOnly' Flag Variant Ground 
CWE-273 Improper Check for Dropped Privileges Base Ground 

CWE-401 
Improper Release of Memory Before Removing Last 
Reference Variant Ground 

CWE-610 
Externally Controlled Reference to a Resource in 
Another Sphere Class Spacecraft & Ground 

CWE-155 
Improper Neutralization of Wildcards or Matching 
Symbols Variant Ground 

CWE-698 Execution After Redirect (EAR) Base Ground 
CWE-410 Insufficient Resource Pool Base Spacecraft & Ground 

CWE-167 Improper Handling of Additional Special Element Base Ground 

CWE-156 Improper Neutralization of Whitespace Variant Ground 
CWE-457 Use of Uninitialized Variable Variant Spacecraft & Ground 
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CWE ID CWE Name CWE Type Domain Applicability 

CWE-939 
Improper Authorization in Handler for Custom URL 
Scheme Base Ground 

CWE-696 Incorrect Behavior Order Class Spacecraft & Ground 

CWE-014 Compiler Removal of Code to Clear Buffers Variant Ground 
CWE-111 Direct Use of Unsafe JNI Base Ground 

CWE-239 Failure to Handle Incomplete Element Variant Ground 

CWE-382 J2EE Bad Practices: Use of System.exit() Variant Ground 
CWE-493 Critical Public Variable Without Final Modifier Variant Ground 

CWE-497 
Exposure of System Data to an Unauthorized 
Control Sphere Variant Ground 

CWE-166 Improper Handling of Missing Special Element Base Ground 
CWE-471 Modification of Assumed-Immutable Data (MAID) Base Ground 

CWE-455 Non-exit on Failed Initialization Base Ground 

CWE-364 Signal Handler Race Condition Base Spacecraft & Ground 
CWE-142 Improper Neutralization of Value Delimiters Variant Ground 

CWE-236 Improper Handling of Undefined Parameters Variant Ground 
CWE-359 Exposure of Private Information ('Privacy Violation') Class Ground 

CWE-230 Improper Handling of Missing Values Variant Ground 

CWE-214 
Information Exposure Through Process 
Environment Variant Ground 

CWE-479 Signal Handler Use of a Non-reentrant Function Variant Ground 

CWE-123 Write-what-where Condition Base Spacecraft & Ground 

CWE-336 
Same Seed in Pseudo-Random Number Generator 
(PRNG) Base Ground 

CWE-069 
Improper Handling of Windows ::DATA Alternate 
Data Stream Variant Ground 

CWE-451 
User Interface (UI) Misrepresentation of Critical 
Information Class Ground 

CWE-322 Key Exchange without Entity Authentication Base Ground 
CWE-323 Reusing a Nonce, Key Pair in Encryption Base Ground 

CWE-554 
ASP.NET Misconfiguration: Not Using Input 
Validation Framework Variant Ground 

CWE-345 Insufficient Verification of Data Authenticity Class Ground 
CWE-242 Use of Inherently Dangerous Function Base Ground 

CWE-708 Incorrect Ownership Assignment Base Ground 
CWE-755 Improper Handling of Exceptional Conditions Class Ground 

CWE-126 Buffer Over-read Variant Ground 

CWE-397 Declaration of Throws for Generic Exception Base Spacecraft & Ground 
CWE-617 Reachable Assertion Variant Ground 

CWE-067 Improper Handling of Windows Device Names Variant Ground 
CWE-421 Race Condition During Access to Alternate Channel Base Ground 

CWE-030 Path Traversal: '\dir\..\filename' Variant Ground 
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CWE ID CWE Name CWE Type Domain Applicability 

CWE-828 
Signal Handler with Functionality that is not 
Asynchronous-Safe Base Ground 

CWE-621 Variable Extraction Error Base Ground 

CWE-690 
Unchecked Return Value to NULL Pointer 
Dereference Chain Spacecraft & Ground 

CWE-274 Improper Handling of Insufficient Privileges Base Ground 
CWE-783 Operator Precedence Logic Error Variant Ground 

CWE-283 Unverified Ownership Base Ground 

CWE-201 Information Exposure Through Sent Data Variant Ground 

CWE-567 
Unsynchronized Access to Shared Data in a 
Multithreaded Context Base Spacecraft & Ground 

CWE-705 Incorrect Control Flow Scoping Class Ground 

CWE-141 
Improper Neutralization of Parameter/Argument 
Delimiters Variant Ground 

CWE-153 Improper Neutralization of Substitution Characters Variant Ground 
CWE-232 Improper Handling of Undefined Values Variant Ground 

CWE-317 Cleartext Storage of Sensitive Information in GUI Variant Ground 

CWE-639 Authorization Bypass Through User-Controlled Key Base Ground 

CWE-1021 
Improper Restriction of Rendered UI Layers or 
Frames Base Ground 

CWE-618 Exposed Unsafe ActiveX Method Base Ground 

CWE-152 Improper Neutralization of Macro Symbols Variant Ground 
CWE-281 Improper Preservation of Permissions Base Ground 

CWE-369 Divide By Zero Base Spacecraft & Ground 
CWE-252 Unchecked Return Value Base Ground 

CWE-208 Information Exposure Through Timing Discrepancy Base Ground 

CWE-215 Information Exposure Through Debug Information Variant Ground 
CWE-356 Product UI does not Warn User of Unsafe Actions Base Ground 

CWE-589 Call to Non-ubiquitous API Variant Spacecraft 
CWE-198 Use of Incorrect Byte Ordering Base Spacecraft 

CWE-396 Declaration of Catch for Generic Exception Base Spacecraft 
CWE-489 Leftover Debug Code Base Spacecraft & Ground 

CWE-112 Missing XML Validation Base Spacecraft & Ground 

CWE-764 Multiple Locks of a Critical Resource Variant Spacecraft & Ground 
CWE-789 Uncontrolled Memory Allocation Variant Spacecraft & Ground 

CWE-405 Asymmetric Resource Consumption (Amplification) Class Spacecraft 
CWE-413 Improper Resource Locking Base Spacecraft 

CWE-508 Non-Replicating Malicious Code Base Spacecraft 

CWE-511 Logic/Time Bomb Base Spacecraft 
CWE-308 Use of Single-factor Authentication Base Spacecraft & Ground 

CWE-466 Return of Pointer Value Outside of Expected Range Base Spacecraft 
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CWE ID CWE Name CWE Type Domain Applicability 
CWE-787 Out-of-bounds Write Base Spacecraft 

CWE-506 Embedded Malicious Code Class Spacecraft 

CWE-763 Release of Invalid Pointer or Reference Base Spacecraft 

CWE-924 
Improper Enforcement of Message Integrity During 
Transmission in a Communication Channel Class Spacecraft 

CWE-121 Stack-based Buffer Overflow Variant Spacecraft 

CWE-192 Integer Coercion Error Class Spacecraft 
CWE-468 Incorrect Pointer Scaling Base Spacecraft 

CWE-469 Use of Pointer Subtraction to Determine Size Base Spacecraft 
CWE-834 Excessive Iteration Base Spacecraft 
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APPENDIX	B: 	SECURE	CODING	DESIGN	REVIEW	CHECKLIST	
The source of this information is from NASA’s Software Assurance Research Program (SARP) 
initiative on secure software development. 

 
Language 
☐ Examine the pros and cons for the selected language for issues such as memory management 

and exception handling. 

 
Libraries and Frameworks 
☐ Ensure that abstraction libraries are being used to simplify the code, mitigate risky APIs, 

provide separation between the data and code, and provide memory management. 

☐ Verify that the design properly separates code and data. 

 
Authentication 
☐ Verify that the plan for handling initial account passwords uses a secure mechanism for 

creation and distribution of account credentials. 

☐ Ensure that any stored authentication credentials are outside of the code, encrypted, and in a 

secure location. 

☐ Verify that credentials for back-end connections are limited to minimal actions and use 

generated passwords valid for specified time intervals. 
 
Encryption 
☐ Ensure that all sensitive data and resources are identified and encrypted. 

☐ Verify that the transmission of all sensitive data in the system is encrypted. 

☐ Verify that the cryptographic algorithms being used are current and strong. 

 
Error Handling 
☐ Ensure that the program is designed in such a way that it will always fail gracefully (fail 

closed). 

 
External Communication 
☐ Ensure that all data used in external commands is properly protected. 

☐ Verify that all communications use strictly defined communication protocols. 

☐ Verify that checksums are used for all data file transmissions. 

 
External Resources 
☐ Ensure that the minimum and maximum expectations for resources are specified and 

behaviors are defined for when those limits are approached or exceeded. 

☐ Verify that the interleaving of operations on files from multiple processes is minimized. 

☐ Verify that proper locking mechanisms are present on resources. 

☐ Ensure that deadlock is actively being prevented for in the design of the code. 

☐ Ensure that throttling mechanisms are designed to prevent resource exhaustion. 
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Input Validation 
☐ Verify that all input from external sources is validated. 

☐ Ensure that input validation uses whitelists (not blacklists). 

☐ Ensure that input validation is duplicated on both the client and the server side (web only). 

 
Segregation 
☐ Verify that the design segregates functionality by access level. 

☐ Ensure that the design compartmentalizes sensitive data into “safe” areas. 

☐ Verify that the design supports running in sandbox environments to ensure safe interaction 

between the software and the operating system. 
 
Threat Protection 
☐ Verify that countermeasures are sufficient for all threats and attacks identified in threat 

modeling. 

☐ Perform attack modeling from an attacker’s perspective to identify weaknesses and 

vulnerabilities that should be countered. Ensure that the design is not vulnerable to these attacks.  
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APPENDIX	C: 	SECURE	CODING	CODE	REVIEW	CHECKLIST	
The source of this information is from NASA’s Software Assurance Research Program (SARP) 
initiative on secure software development. 

 

☐ Buffer Copy without Checking Size of Input 
• Are the sizes of all input buffers less than the sizes of their corresponding output buffers? 

• Do all user inputs meet the requirements of the buffer? 
o If the array is only 24 characters, do not allow a character array of 25 characters 

 

☐ Buffer Access with Incorrect Length Value 

• Is the length value used for reading/writing to a buffer within the bounds of the buffer? 
 

☐ Cleartext Storage in the Registry 

• If storing sensitive information in the registry, is the information encrypted and not just 
encoded to be human-unreadable. 

 

☐ Cleartext Storage of Sensitive Information in a Cookie 

• If storing sensitive information in a cookie, is the information encrypted and not just 
encoded to be human-unreadable. 

 

☐ Cleartext Storage of Sensitive Information in Executable 

• If storing sensitive information in an executable, is the information encrypted and not just 
encoded to be human-unreadable. 

 

☐ Out-of-bounds Write 
• Are all pointers and index values within the bounds of the intended buffer? 

• Are values passed to functions like memcpy() within the bounds of the buffer being 
assigned to? 

☐ Execution with Unnecessary Privileges 

• Are permission levels/privileges at their minimum whenever possible? 

• Does the code executed during times of increased privilege handle exceptions correctly to 
ensure the subsequent call to downgrade permissions? 

• Are all processes and threads called by processes using minimum privileges necessary? 
o If the parent process is running as root, all child threads will have root 

permissions. 

☐ Use of Externally-Controlled Format String 
• Are format strings avoided when dealing with external input? 

• If using external input with particularly dangerous functions (printf() for example), is the 
formatting is done by the program, and not the user? 

For example: 

Printf(y,userInput) vs printf(userInput). The latter case allows the user to specify 
format strings such as %n or %s which can lead to a variety of different attacks. 

 
 



 
 

78 
 

☐ Allocation of Resources Without Limits or Throttling 
• Are limits set on how many resources can be allocated to a specific user and in total to 

prevent resource exhaustion? 
 

☐ Improper Input Validation, especially custom input validation to enforce business rules 

• Are whitelists used instead of blacklists to validate known inputs? 

• Does the input validation verify the values of the inputs and not just the characters? 
For instance, if a color is expected and the user provides “boat”, although it may 

syntactically be correct (alphabetic characters and within a certain limit), its 
clearly not the correct input. 

 

☐ Improper Limitation of a Pathname to a Restricted Directory 

• Do whitelists for the types of characters that can be included in the pathname only allow 
one “.” or prevent the usage of “/”? 

For example you may have that a string must start with “/safe/directory” to be at 

the start of an input, but if the user inputs “safe/directory/../../badStuff”, the 
system has been corrupted. 

• Does the input validation prevent the insertion of null characters? 
o Null characters can prevent normal functionality. 

 

☐ Improper Neutralization of Special Elements used in an OS Command 
• When input is being processed and used in any system level commands, are all special 

elements being neutralized? 

For instance, if user input will be appended to a system level command such as 
running a program, ensure that it is properly formatted and does not contain 

special characters like &, /, .. , or other special elements that can lead to malicious 
functionality. 

 

☐ Improper Restriction of Operations within the Bounds of a Memory Buffer 

• Is all input within the bounds of the buffers being created? 
o If an element can be picked in an array, make sure that position < length of array. 

• Are direct addresses to memory locations valid and correct? 
o Ensures that important information is not being overwritten. 

 

☐ Incorrect Calculation of Buffer Size 
• Do buffer size calculations include NULL pointers and take into account any types of 

overflows (integer, long, etc.)? 

 

☐ Incorrect Permission Assignment for Critical Resource 

• Are permissions are set to the lowest possible and only heightened for specific purposes? 
o DO NOT rely on users to read the documentation to modify permissions. 

• Does the code account for the environment in which the software is running? 
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☐ Authentication Bypass by Spoofing 

• Are IP verification, key exchanges, and filtering and access lists used during 
authentication? 

• Are these checks occurring whenever an IP address is being taken as an argument or 
being used? 

o Spoofing attacks are when a malicious party impersonates a user or a device on a 
network in order to steal data, launch attacks on the network hosts, or bypass 

access controls. 
 

☐ Missing Encryption of Sensitive Data 
• Is all confidential or sensitive information encrypted in a strong and secure manner? 

 

☐ Loops 
• Are loops free from Logical errors? 

o Such as missing parentheses in the expression (a + b) / 2 

• Are loops free from mathematical errors? 
o Basic math errors or incorrect incrementing / decrementing 

• Are loops free from variable handling errors 
o Loop variables are initialized and modified correctly 

• Are termination conditions defined to limit the number of times to try to achieve a result? 
o Like attempting to connect to a server when it is down. 

 

☐ Deadlock 

• Are at least one of the following Coffman conditions guaranteed to NOT be true for 
resource access? 

o Mutual exclusion: at least one resource is held in a non-shareable mode. Only one 
process can use the resource at any given instant of time. 

o Hold and wait or resource holding: a process is currently holding at least one 
resource and requesting additional resources which are being held by other 

processes. 
o No preemption: a resource can be released only voluntarily by the process holding 

it. 
o Circular wait: a process must be waiting for a resource which is being held by 

another process, which in turn is waiting for the first process to release the 
resource. In general, there is a set of waiting processes, P = {P1, P2, . . . PN}, 

such that P1 is waiting for a resource held by P2, P2 is waiting for a resource held 
by P3 and so on until PN is waiting for a resource held by P1." 

 

☐ Race Condition During Access to Alternate Channel 

• Are channels to communicate to users secure such that outside users cannot hijack into it? 
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☐ Resource Management Errors 

• Do resources have limits to prevent exhaustion by users? 
o Limit threads, etc. 

• Are objects never used after being freed from memory? 

• Are all objects freed only once? 
 

☐ Use of Hard-coded Credentials 

• Are hard coded credentials hashed and placed in configuration files or databases with 
proper security? 

• Are limits set on which entities can access features that require the hard-coded 
credentials? 

 

☐ Use of Potentially Dangerous Function 

• Is the use of dangerous functions avoided by using their safer equivalents? 
o gets , printf, memset, strcpy, etc. 

• If not, are they being properly set up to avoid vulnerabilities? 
 

☐ Access of Memory Location after End of Buffer 

• Is all pointer arithmetic correct and accessing memory locations within the bounds of the 
buffer? 

• Are the buffer’s bounds well defined to ensure that memory is not being tampered with in 
unexpected ways? 

 

☐ Information Exposure 

• Are all areas of code that deal with sensitive information safely and correctly handling 
the information? 

o Make sure it is being encrypted, if necessary, and check for any outbound 
connections to unsafe areas of the code. 

 

☐ Integer Overflow or Wraparound 

• Is all arithmetic for integers, shorts, or any other numeric data type correct? 
o Specifically check for cases where user input is allowed or cases where one type 

is being converted to another (int to short for example). 

• Are the proper types for values being used? 
o If expecting large numbers, use long instead of int, for example. 

 

☐ Unauthorized I/O Operations on a File (File Descriptor Leak) 

• Are all file descriptors closed before forking or executing a child process? 
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☐ Temporary Files 

• Are sufficiently random names used to prevent guessing of temporary file names? 

• Are files created or opened in a single operation to prevent race conditions? 

• Are files created or opened such that they fail if the file already?  
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APPENDIX	D: 	SAMPLE	REQUIREMENTS	
The below are sample requirements that can be leveraged for software security. 

Requirement Text Rationale / Additional Guidance / Notes 

NIST 800-53 
rev4 Control 
Mapping (if 

exists) 
The Program shall define policy and procedures to ensure that the developed or delivered systems 
do not embed unencrypted static authenticators in applications, access scripts, configuration files, 
nor store unencrypted static authenticators on function keys.   

 
IA-5(7) 

The system shall restrict the use of information inputs to the system and designated ground 
stations as defined in the applicable ICDs.  

 
SC-23, SI-
10,SI-10(5) 

The system shall implement cryptography for the indicated uses using the indicated protocols, 
algorithms, and mechanisms, in accordance with applicable federal laws, Executive Orders, 
directives, policies, regulations, and standards: [NSA- certified or approved cryptography for 
protection of classified information, FIPS-validated cryptography for the provision of hashing] in 
accordance with applicable federal laws, Executive Orders, directives, policies, regulations, and 
standards.  

 
IA-7, SC-13 

The Program shall require the developer of the system, system component, or system services to 
demonstrate the use of a system development life cycle that includes [state-of-the-practice 
system/security engineering methods, software development methods, 
testing/evaluation/validation techniques, and quality control processes].  

Examples of good security practices would be using 
defense-in-depth tactics across the board, least-privilege 
being implemented, two factor authentication everywhere 
possible, using DevSecOps, implementing and validating 
adherence to secure coding standards, performing static 
code analysis, component/origin analysis for open source, 
fuzzing/dynamic analysis with abuse cases, etc. 

SA-3, SA-4(3) 

The Program shall require subcontractors developing information system components or providing 
information system services (as appropriate) to demonstrate the use of a system development life 
cycle that includes [state-of-the-practice system/security engineering methods, software 
development methods, testing/evaluation/validation techniques, and quality control processes].  

Select the particular subcontractors, software vendors, and 
manufacturers based on the criticality analysis performed 
for the PPP and the criticality of the components that they 
supply.  

SA-3, SA-4(3) 

The Program shall require the developer of the system, system component, or system service to 
deliver the system, component, or service with [Program-defined security configurations] 
implemented.  

For the software, the defined security configuration could 
include to ensure the software does not contain a pre-
defined list of Common Weakness Enumerations (CWEs) 
and/or CAT I/II Application STIGs. 

SA-4(5) 

The Program shall require the developer of the system, system component, or system service to 
use [Program-defined security configurations] as the default for any subsequent system, 
component, or service reinstallation or upgrade.  

 
SA-4(5) 

The Program shall review proposed changes to the system, assessing both mission and security 
impacts.   

 
SA-10, CM-
3(2) 

The Program shall perform configuration management during system, component, or service 
during [design; development; implementation; operations].  

 
SA-10 
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Requirement Text Rationale / Additional Guidance / Notes 

NIST 800-53 
rev4 Control 
Mapping (if 

exists) 
The Program prohibits the use of binary or machine-executable code from sources with limited or 
no warranty and without the provision of source code.  

 
SI-7(14) 

The system shall prevent the installation of Flight Software without verification that the 
component has been digitally signed using a certificate that is recognized and approved by the 
Program.  

 
CM-5(3) 

The Program shall perform and document threat and vulnerability analyses of the as-built system, 
system components, or system services.  

 
SA-11(2)  

The Program shall use the threat and vulnerability analyses of the as-built system, system 
components, or system services to inform and direct subsequent testing/evaluation of the as-built 
system, component, or service.  

 
SA-11(2) 

The Program shall perform a manual code review of all flight code.  
 

SA-11(4) 

The Program shall conduct an Attack Surface Analysis and reduce attack surfaces to a level that 
presents a low level of compromise by an attacker.  

 
SA-11(6), SA-
15(5) 

The Program shall use threat modeling and vulnerability analysis to inform the current 
development process using analysis from similar systems, components, or services where 
applicable.  

 
SA-15(4), SA-
15(8) 

The Program shall create and implement a security assessment plan that includes: (1) The types of 
analyses, testing, evaluation, and reviews of [all] software and firmware components; (2) The 
degree of rigor to be applied to include abuse cases and/or penetration testing; and (3) The types 
of artifacts produced during those processes.  

The security assessment plan should include evaluation of 
mission objectives in relation to the security of the mission. 
Assessments should not only be control based but also 
functional based to ensure mission is resilient against 
failures of controls. 

SA-11, SA-
11(5),CA-8 

The Program shall verify that the scope of security testing/evaluation provides complete coverage 
of required security controls (to include abuse cases and penetration testing) at the depth of 
testing defined in the test documents.  

* The frequency of testing should be driven by Program 
completion events and updates.  
* Examples of approaches are static analyses, dynamic 
analyses, binary analysis, or a hybrid of the three 
approaches 

SA-11(5), SA-
11(7),CA-8 

The Program shall perform [Selection (one or more): unit; integration; system; regression] 
testing/evaluation at [Program-defined depth and coverage].  

The depth needs to include functional testing as well as 
negative/abuse testing. 

SA-11 

The Program shall maintain evidence of the execution of the security assessment plan and the 
results of the security testing/evaluation.  

 
SA-11, CA-8 

The Program shall implement a verifiable flaw remediation process into the developmental and 
operational configuration management process.  

The verifiable process should also include a cross reference 
to mission objectives and impact statements. 
Understanding the flaws discovered and how they correlate 
to mission objectives will aid in prioritization. 

SA-11 

The Program shall correct flaws identified during security testing/evaluation.   Flaws that impact the mission objectives should be 
prioritized. 

SA-11 
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Requirement Text Rationale / Additional Guidance / Notes 

NIST 800-53 
rev4 Control 
Mapping (if 

exists) 
The Program shall perform vulnerability analysis and risk assessment of [all systems and software].  

 
SA-15(7), 
RA-5 

The Program shall identify, report, and coordinate correction of cybersecurity-related information 
system flaws.  

 
SI-2 

The Program shall correct reported cybersecurity-related information system flaws, as requested.  * Although this requirement is stated to specifically apply 
to cybersecurity-related flaws, the Program office may 
choose to broaden it to all system flaws.   
* This requirement is allocated to the Program, as it is 
presumed, they have the greatest knowledge of the 
components of the system and when identified flaws 
apply.  

SI-2 

The Program shall test software and firmware updates related to flaw remediation for 
effectiveness and potential side effects on mission systems in a separate test environment before 
installation.  

This requirement is focused on software and firmware 
flaws. If hardware flaw remediation is required, refine the 
requirement to make this clear.  

SI-2, CM-
3(2),CM-4(1) 

The Program shall release updated versions of the mission information systems incorporating 
security-relevant software and firmware updates, after suitable regression testing, at a frequency 
no greater than [Program-defined frequency [90 days]].  

On-orbit patching/upgrades may be necessary if 
vulnerabilities are discovered after launch. The system 
should have the ability to update software post-launch. 

CM-3(2), 
CM-4(1) 

The system shall be capable of removing flight software after updated versions have been 
installed.  

 
SI-2(6) 

The Program shall report identified systems or system components containing software affected 
by recently announced cybersecurity-related software flaws (and potential vulnerabilities resulting 
from those flaws) to [Program-defined officials] with cybersecurity responsibilities in accordance 
with organizational policy.  

 
SI-2 

The Program shall ensure that vulnerability scanning tools and techniques are employed that 
facilitate interoperability among tools and automate parts of the vulnerability management 
process by using standards for: (1) Enumerating platforms, custom software flaws, and improper 
configurations; (2) Formatting checklists and test procedures; and (3) Measuring vulnerability 
impact.  

Component/Origin scanning looks for open-source 
libraries/software that may be included into the baseline 
and looks for known vulnerabilities and open source license 
violations. 

RA-5 

The Program shall create prioritized list of software weakness classes (e.g., Common Weakness 
Enumerations) to be used during static code analysis for prioritization of static analysis results.  

The prioritized list of CWEs should be created considering 
operational environment, attack surface, etc. Results from 
the threat modeling and attack surface analysis should be 
used as inputs into the CWE prioritization process. There is 
also a CWSS 
(https://cwe.mitre.org/cwss/cwss_v1.0.1.html) process 
that can be used to prioritize CWEs. The prioritized list of 
CWEs can help with tools selection as well as you select 
tools based on their ability to detect certain high priority 
CWEs. 

SA-11(1), SA-
15(7) 
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Requirement Text Rationale / Additional Guidance / Notes 

NIST 800-53 
rev4 Control 
Mapping (if 

exists) 
The Program shall perform static source code analysis for [all available source code] looking for 
[Select one {Program-defined Top CWE List, SANS Top 25, OWASP Top 10}] weaknesses using no 
less than two static code analysis tools 

 
SA-11(1), SA-
15(7),RA-5 

The Program shall perform component analysis (a.k.a. origin analysis) for developed or acquired 
software.  

Component/Origin scanning looks for open-source 
libraries/software that may be included into the baseline 
and looks for known vulnerabilities and open source license 
violations. 

SA-15(7), 
RA-5 

The Program shall analyze vulnerability/weakness scan reports and results from security control 
assessments.  

 
RA-5 

The Program shall determine the vulnerabilities/weaknesses that require remediation, and 
coordinate the timeline for that remediation, in accordance with the analysis of the vulnerability 
scan report, the Program assessment of risk, and mission needs.  

 
RA-5 

The Program shall share information obtained from the vulnerability scanning process and security 
control assessments with [Program-defined personnel or roles] to help eliminate similar 
vulnerabilities in other systems (i.e., systemic weaknesses or deficiencies).  

 
RA-5 

The Program shall ensure that the vulnerability scanning tools (e.g., static analysis and/or 
component analysis tools) used include the capability to readily update the list of potential 
information system vulnerabilities to be scanned.  

 
RA-5(1) 

The Program shall ensure that the list of potential system vulnerabilities scanned is updated [prior 
to a new scan]  

 
RA-5(2) 

The Program shall define acceptable coding languages to be used by the software developer.  
 

SA-15 

The Program shall define acceptable secure coding standards for use by the developer.  
 

SA-15 

The Program shall have automated means to evaluate adherence to coding standards.  
 

SA-15, SA-
15(7), RA-5 

The Program shall employ dynamic analysis (e.g., using simulation, penetration testing, fuzzing, 
etc.) to identify software/firmware weaknesses and vulnerabilities in developed and incorporated 
code (open source, commercial, or third-party developed code).  

Fuzzing and/or dynamic analysis with abuse cases is 
important to flush out edge cases and how malicious actors 
could affect the system's software. Not all defects (i.e., 
buffer overflows, race conditions, and memory leaks) can 
be discovered statically and require execution of the 
software. This is where cyber testbeds (i.e., cyber ranges) 
are imperative as they provide an environment to 
maliciously attack components in a controlled environment 
to discover these undesirable conditions. Technology has 
improved to where digital twins for embedded systems are 
achievable, which provides an avenue for cyber testing that 
was often not performed due to perceived risk to the flight 
hardware. 

SA-11(5), SA-
11(8),CA-8 
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Requirement Text Rationale / Additional Guidance / Notes 

NIST 800-53 
rev4 Control 
Mapping (if 

exists) 
The Program shall protect against supply chain threats to the system, system components, or 
system services by employing [institutional-defined security safeguards]  

The chosen supply chain safeguards should demonstrably 
support a comprehensive, defense-in-breadth information 
security strategy.  Safeguards should include protections 
for both hardware and software. 

SA-12 

The Program shall conduct a criticality analysis to identify mission critical functions and critical 
components and reduce the vulnerability of such functions and components through secure 
system design.  

During SCRM, criticality analysis will aid in determining 
supply chain risk. For mission critical 
functions/components, extra scrutiny must be applied to 
ensure supply chain is secured. 

SA-12, SA-
14,SA-
15(3),CP-
2(8) 

The Program shall request threat analysis of suppliers of critical components and manage access to 
and control of threat analysis products containing U.S. person information.  

 
SA-12 

The Program shall employ the [Program-defined] approaches for the purchase of the system, 
system components, or system services from suppliers.  

This could include tailored acquisition strategies, contract 
tools, and procurement methods. 

SA-12(1) 

The Program shall maintain documentation tracing the strategies, tools, and methods 
implemented to the Program-defined strategies, tools, and methods as a means to mitigate supply 
chain risk .  

Examples include: (1) Transferring a portion of the risk to 
the developer or supplier through the use of contract 
language and incentives; (2) Using contract language that 
requires the implementation of SCRM throughout the 
system lifecycle in applicable contracts and other 
acquisition and assistance instruments (grants, cooperative 
agreements, Cooperative Research and Development 
Agreements (CRADAs), and other transactions). Within the 
DoD some examples include: (a) Language outlined in the 
Defense Acquisition Guidebook section 13.13. Contracting; 
(b) Language requiring the use of protected mechanisms to 
deliver elements and data about elements, processes, and 
delivery mechanisms; (c) Language that articulates that 
requirement flow down supply chain tiers to sub-prime 
suppliers. (3) Incentives for suppliers that: (a) Implement 
required security safeguards and SCRM best practices; (b) 
Promote transparency into their organizational processes 
and security practices; (c) Provide additional vetting of the 
processes and security practices of subordinate suppliers, 
critical information system components, and services; and 
(d) Implement contract to reduce SC risk down the contract 
stack. (4) Gaining insight into supplier security practices; (5) 
Using contract language and incentives to enable more 
robust risk management later in the lifecycle; (6) Using a 
centralized intermediary or “Blind Buy” approaches to 

SA-12(1) 
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Requirement Text Rationale / Additional Guidance / Notes 

NIST 800-53 
rev4 Control 
Mapping (if 

exists) 
acquire element(s) to hide actual usage locations from an 
untrustworthy supplier or adversary; 

The Program shall employ [Selection (one or more): independent third-party analysis, Program 
penetration testing, independent third-party penetration testing] of [Program-defined supply 
chain elements, processes, and actors] associated with the system, system components, or system 
services.  

 
SA-12(11) 

The Program shall perform penetration testing/analysis: (1) On potential system elements before 
accepting the system; (2) As a realistic simulation of the active adversary’s known adversary 
tactics, techniques, procedures (TTPs), and tools; and (3) Throughout the lifecycle on physical and 
logical systems, elements, and processes.  

Penetration testing should be performed throughout the 
lifecycle on physical and logical systems, elements, and 
processes including: (1) Hardware, software, and firmware 
development processes; (2) Shipping/handling procedures; 
(3) Personnel and physical security programs; (4) 
Configuration management tools/measures to maintain 
provenance; and (5) Any other programs, processes, or 
procedures associated with the production/distribution of 
supply chain elements.  

SA-11(5) 

The Program shall employ [Program-defined] techniques to limit harm from potential adversaries 
identifying and targeting the Program supply chain.  

Examples of security safeguards that the organization 
should consider implementing to limit the harm from 
potential adversaries targeting the organizational supply 
chain, are: (1) Using trusted physical delivery mechanisms 
that do not permit access to the element during delivery 
(ship via a protected carrier, use cleared/official couriers, 
or a diplomatic pouch); (2) Using trusted electronic delivery 
of products and services (require downloading from 
approved, verification-enhanced sites); (3) Avoiding the 
purchase of custom configurations, where feasible; (4) 
Using procurement carve outs (i.e., exclusions to 
commitments or obligations), where feasible; (5) Using 
defensive design approaches; (6) Employing system OPSEC 
principles; (7) Employing a diverse set of suppliers; (8) 
Employing approved vendor lists with standing reputations 

SA-12(5), SC-
38 
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Requirement Text Rationale / Additional Guidance / Notes 

NIST 800-53 
rev4 Control 
Mapping (if 

exists) 
in industry; (9) Using a centralized intermediary and “Blind 
Buy” approaches to acquire element(s) to hide actual usage 
locations from an untrustworthy supplier or adversary 
Employing inventory management policies and processes; 
(10) Using flexible agreements during each acquisition and 
procurement phase so that it is possible to meet emerging 
needs or requirements to address supply chain risk without 
requiring complete revision or re-competition of an 
acquisition or procurement; (11) Using international, 
national, commercial or government standards to increase 
potential supply base; (12) Limiting the disclosure of 
information that can become publicly available; and (13) 
Minimizing the time between purchase decisions and 
required delivery.  

The Program shall use all-source intelligence analysis of suppliers and potential suppliers of the 
information system, system components, or system services to inform engineering, acquisition, 
and risk management decisions.  

* The Program should also consider sub suppliers and 
potential sub suppliers.    
* All-source intelligence of suppliers that the organization 
may use includes: (1) Defense Intelligence Agency (DIA) 
Threat Assessment Center (TAC), the enterprise focal point 
for supplier threat assessments for the DoD acquisition 
community risks; (2) Other U.S. Government resources 
including: (a) Government Industry Data Exchange Program 
(GIDEP) – Database where government and industry can 
record issues with suppliers, including counterfeits; and (b) 
System for Award Management (SAM) – Database of 
companies that are barred from doing business with the US 
Government.  

SA-12(8) 

The Program (and Prime Contractor) shall conduct a supplier review prior to entering into a 
contractual agreement with a contractor (or sub-contractor) to acquire systems, system 
components, or system services.  

 
SA-12(2) 

The Program shall maintain a list of suppliers and potential suppliers used, and the products that 
they supply to include software.  

Ideally you have diversification with suppliers PL-8(2) 

The Program shall employ [Program-defined Operations Security (OPSEC) safeguards] to protect 
supply chain-related information for the system, system components, or system services.  

OPSEC safeguards may include: (1) Limiting the disclosure 
of information needed to design, develop, test, produce, 
deliver, and support the element for example, supplier 
identities, supplier processes, potential suppliers, security 
requirements, design specifications, testing and evaluation 
result, and system/component configurations, including 

SA-12(9), SC-
38,CP-2(8) 
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Requirement Text Rationale / Additional Guidance / Notes 

NIST 800-53 
rev4 Control 
Mapping (if 

exists) 
the use of direct shipping, blind buys, etc.; (2) Extending 
supply chain awareness, education, and training for 
suppliers, intermediate users, and end users; (3) Extending 
the range of OPSEC tactics, techniques, and procedures to 
potential suppliers, contracted suppliers, or sub-prime 
contractor tier of suppliers; and (4) Using centralized 
support and maintenance services to minimize direct 
interactions between end users and original suppliers. 

The Program shall develop and implement anti-counterfeit policy and procedures designed to 
detect and prevent counterfeit components from entering the information system, including 
support tamper resistance and provide a level of protection against the introduction of malicious 
code or hardware.  

 
SA-19 

The Program shall develop and implement anti-counterfeit policy and procedures, in coordination 
with the [CIO], that is demonstrably consistent with the anti-counterfeit policy defined by the 
Program office.  

 
SA-19 

The system shall maintain the confidentiality and integrity of information during preparation for 
transmission and during reception.  

 
SC-8(2) 

The system shall protect the confidentiality and integrity of the following information using 
cryptography while it is at rest: [all information].   

 
SC-28, SC-
28(1),SI-7(6) 

The Program shall enable integrity verification of software and firmware components.  
 

SA-10(1), SI-
7 

The system shall perform an integrity check of [Program-defined software, firmware, and 
information] at startup; at [Program-defined transitional states or security-relevant events]  

 
SI-7(1) 

The Program shall define and document the transitional state or security-relevant events when the 
system will perform integrity checks on software, firmware and information.  

 
SI-7(1) 

The Program shall employ automated tools that provide notification to [Program-defined 
personnel] upon discovering discrepancies during integrity verification.  

 
SI-7(2) 

The Program shall define the security safeguards that are to be employed when integrity violations 
are discovered.  

 
SI-7(5) 

The Program shall ensure that the contractors/developers have all ASICs designed, developed, 
manufactured, packaged, and tested by suppliers with a Defense Microelectronics Activity (DMEA) 
Trust accreditation.  

 
SA-12, SA-
12(1) 

The [software subsystem] shall operate securely in off-nominal power conditions, including loss of 
power and spurious power transients.  

 
SI-17 

The [software subsystem] shall identify and reject commands received out-of-sequence when the 
out-of-sequence commands can cause a hazard/failure or degrade the control of a hazard or 
mission.  

 
SI-10 
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Requirement Text Rationale / Additional Guidance / Notes 

NIST 800-53 
rev4 Control 
Mapping (if 

exists) 
The [software subsystem] shall detect and recover from detected memory errors or transitions to 
a known cyber-safe state.  

 
SI-17 

The [software subsystem] shall recover to a known cyber-safe state when an anomaly is detected.  
 

SI-17 

The [software subsystem] shall accept [Program defined hazardous] commands only when 
prerequisite checks are satisfied.  

 
SI-10 

The [software subsystem] shall safely transition between all predefined, known states.  
 

SI-17 

The [software subsystem] shall discriminate between valid and invalid input into the software and 
rejects invalid input.  

 
SI-10, SI-
10(3) 

The [software subsystem] shall properly handle spurious input and missing data.  
 

SI-10, SI-
10(3) 

The system shall have failure tolerance on sensors used by software to make mission-critical 
decisions.  

 
SI-17 

The [software subsystem] shall provide two independent and unique command messages to 
deactivate a fault tolerant capability for a critical or catastrophic hazard.  

 
AC-3(2) 

The [software subsystem] shall provide at least one independent command for each operator-
initiated action used to shut down a function leading to or reducing the control of a hazard.  

 
SI-10(5) 

The [software subsystem] shall provide non-identical methods, or functionally independent 
methods, for commanding a mission critical function when the software is the sole control of that 
function.  

 
AC-3(2) 

The [software subsystem] shall provide independent mission/cyber critical threads such that any 
one credible event will not corrupt another mission/cyber critical thread.  

 
SC-3 

The system’s mission/cyber critical commands shall require to be "complex" and/or diverse from 
other commands so that a single bit flip could not transform a benign command into a hazardous 
command.  

 
SI-10(5) 

The [software subsystem] shall perform prerequisite checks for the execution of hazardous 
commands.  

 
SI-10 

The [software subsystem] shall validate a functionally independent parameter prior to the issuance 
of any sequence that could remove an inhibit or perform a hazardous action.  

 
SI-10(3) 

The [Program-defined security policy] shall state that information should not be allowed to flow 
between partitioned applications unless explicitly permitted by the Program's security policy.  

 
AC-4 

The Program shall identify the key system components or capabilities that require isolation 
through physical or logical means.  

 
SC-3 

The system shall enforce approved authorizations for controlling the flow of information within 
the system and between interconnected systems based on the [Program defined security policy] 
that information does not leave the system boundary unless it is encrypted.  

 
AC-4 
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Requirement Text Rationale / Additional Guidance / Notes 

NIST 800-53 
rev4 Control 
Mapping (if 

exists) 
The system shall, when transferring information between different security domains, implements 
the following security policy filters that require fully enumerated formats that restrict data 
structure and content: connectors and semaphores implemented in the RTOS.  

 
AC-4(14) 

The system shall use protected processing domains to enforce the policy that information does not 
leave the system boundary unless it is encrypted as a basis for flow control decisions.  

 
AC-4(2) 

The system shall isolate [Program-defined] mission critical functionality from non-mission critical 
functionality by means of an isolation boundary (implemented via partitions) that controls access 
to and protects the integrity of, the hardware, software, and firmware that provides that 
functionality.  

* Examine the isolation between mission critical and non-
mission critical functionality for each individual information 
system component. Include architectural considerations in 
the examination, including isolation derived from using 
distinct components for mission critical and non-mission 
critical functionality. This would include having multiple 
1553 buses for example to segregate C&DH/TT&C with 
payload operations.  
 * Methods to separate the mission/cyber critical software 
from software that is not critical, such as partitioning, may 
be used (i.e., ARINC 653).  If such software methods are 
used to separate the code and are verified, then the 
software used in the isolation method is mission/cyber 
critical, and the rest of the software is not mission/cyber 
critical. 

SC-3 

The system data within partitioned applications shall not be read or modified by other 
applications/partitions.  

 
SC-4, SC-6 

The system shall employ the principle of least privilege, allowing only authorized accesses 
processes which are necessary to accomplish assigned tasks in accordance with system functions.  

 
AC-6 

The system shall maintain a separate execution domain for each executing process.  
 

SC-7(21), SC-
39 

The system shall ensure that processes reusing a shared system resource (e.g., registers, main 
memory, secondary storage) do not have access to information (including encrypted 
representations of information) previously stored in that resource during a prior use by a process 
after formal release of that resource back to the system or reuse.  

 
SC-4 

The system shall prevent unauthorized and unintended information transfer via shared system 
resources.  

 
SC-4 

The system software must not be able to tamper with the security policy or its enforcement 
mechanisms.   

 
SC-3 

The system protects the availability of resources by allocating [Program-defined] resources based 
on [priority and/or quota].  

 
SC-6 

The trusted boot/RoT shall be a separate compute engine controlling the trusted computing 
platform cryptographic processor.  

 
SI-7(9) 
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Requirement Text Rationale / Additional Guidance / Notes 

NIST 800-53 
rev4 Control 
Mapping (if 

exists) 
The trusted boot/RoT computing module shall be implemented on radiation tolerant burn-in (non-
programmable) equipment.  

 
SI-7(9) 

The system boot firmware must verify a trust chain that extends through the hardware root of 
trust, boot loader, boot configuration file, and operating system image, in that order.  

 
SI-7(9) 

The system boot firmware must enter a recovery routine upon failing to verify signed data in the 
trust chain, and not execute or trust that signed data.  

 
SI-7(9) 

The system shall allocate enough boot ROM memory for secure boot firmware execution.  
 

SI-7(9) 

The system shall allocate enough SRAM memory for secure boot firmware execution.  
 

SI-7(9) 

The system secure boot mechanism shall be Commercial National Security Algorithm Suite (CNSA) 
compliant.  

 
SI-7(9) 

The system shall support the algorithmic construct Elliptic Curve Digital Signature Algorithm 
(ECDSA) NIST P-384 + SHA-38 

 
SI-7(9) 

The system hardware root of trust must be an ECDSA NIST P-384 public key.  
 

SI-7(9) 

The system hardware root of trust must be loadable only once, post-purchase.  
 

SI-7(9) 

The system boot firmware must validate the boot loader, boot configuration file, and operating 
system image, in that order, against their respective signatures.  

 
SI-7(9) 

The Program shall perform static binary analysis of all firmware that is utilized on the spacecraft.  Many commercial products/parts are utilized within the 
system and should be analyzed for security weaknesses. 
Blindly accepting the firmware is free of weakness is 
unacceptable for high assurance missions. 

SA-11, RA-5 

The Program shall define/maintain an approved operating system list for use on spacecraft.  The operating system is extremely important to security 
and availability of the system, therefore should receive high 
levels of assurance that it operates as intended and free of 
critical weaknesses/vulnerabilities.  

CM-7(5) 

The system's operating system, if COTS or FOSS, shall be selected from a [Program-defined] 
accepted list.  

 
SI-7(14), 
CM-7(5) 

The system shall retain the capability to update/upgrade operating systems while in operations. The operating system updates should be performed using 
multi-factor authorization and should only be performed 
when risk of compromise/exploitation of identified 
vulnerability outweighs the risk of not performing the 
update. 

SA-4(5) 

The Program shall define acceptable secure communication protocols available for use within the 
mission in accordance with applicable federal laws, Executive Orders, directives, policies, 
regulations, and standards.  

 
SA-4(9) 

The system shall only use [Program-defined] communication protocols within the mission.  
 

SA-4(9) 
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Requirement Text Rationale / Additional Guidance / Notes 

NIST 800-53 
rev4 Control 
Mapping (if 

exists) 
The system shall protect the confidentiality and integrity of the following transmitted information: 
"all transmitted information".  

 
SC-8 

The system shall implement cryptographic mechanisms to prevent unauthorized disclosure of, and 
detect changes to, information during transmission unless otherwise protected by no alternative 
physical safeguards.  

 
SC-8(1), SI-
7(6) 

The system shall maintain the confidentiality and integrity of information during preparation for 
transmission and during reception.  

 
SC-8(2) 

The system shall implement cryptographic mechanisms to protect message externals unless 
otherwise protected by no alternative physical safeguards.  

 
SC-8(3) 

The system shall generate error messages that provide information necessary for corrective 
actions without revealing information that could be exploited by adversaries.  

 
SI-11 

The Program shall conduct an assessment of risk, including the likelihood and magnitude of harm, 
from the unauthorized access, use, disclosure, disruption, modification, or destruction of the 
system and the information it processes, stores, or transmits.  

 
RA-3 

The Program's risk assessment shall include the full end to end communication pathway from the 
ground to the spacecraft.  

 
RA-3 

The Program shall document risk assessment results in [risk assessment report].  
 

RA-3 

The Program shall review risk assessment results [At least annually if not otherwise defined in 
formal organizational policy].  

 
RA-3 

The Program shall update the risk assessment [At least annually if not otherwise defined in formal 
institutional policy] or whenever there are significant changes to the information system or 
environment of operation (including the identification of new threats and vulnerabilities), or other 
conditions that may impact the security state of the system.  

 
RA-3 

The Program shall coordinate penetration testing on [program-defined mission critical system 
components (hardware and/or software)].  

 
CA-8 

The system shall be designed and configured so that [Program-defined encrypted communications 
traffic and data] is visible to system monitoring tools.   

 
SI-4(10) 

The system shall integrate cyber related detection and responses with existing fault management 
capabilities to ensure tight integration between traditional fault management and cyber intrusion 
detection and prevention.  

 
AU-6(4), SI-
4(16) 

The system shall provide an alert immediately to [at a minimum the mission director, 
administrators, and security officers] when the following failure events occur: [minimally but not 
limited to auditing software/hardware errors; failures in the audit capturing mechanisms; and 
audit storage capacity reaching 95%, 99%, and 100%] of allocated capacity.  

 
AU-5(2) 

The Program shall document and design a security architecture using a defense-in-depth approach 
that allocates the Program defined safeguards to the indicated locations and layers: [Examples 

 
PL-8, PL-8(1) 
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Requirement Text Rationale / Additional Guidance / Notes 

NIST 800-53 
rev4 Control 
Mapping (if 

exists) 
include operating system abstractions and hardware mechanisms to the separate processors in the 
system, internal components, and the software].  

The Program shall implement a security architecture and design that provides the required 
security functionality, allocates security controls among physical and logical components, and 
integrates individual security functions, mechanisms, and processes together to provide required 
security capabilities and a unified approach to protection.  

 
SA-2, SA-8 
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APPENDIX	E: 	GLOSSARY	OF	TERMS	
The source of this information is from NASA’s Software Assurance Research Program (SARP) 
initiative on secure software development. 
 

Abstraction Library/Layer 

A way of hiding the implementation details of a particular set of functionalities. Usually 
implemented using existing functions and features (sometimes third-party libraries or 
frameworks) that are proven to work and are well tested. 

Attack Modeling 

Attack Modeling examines the application from an attacker’s perspective using known attack 
patterns to see what the system is vulnerable to. Attack Modeling differs from Threat Modeling 
in that Attack Modeling identifies specific attacks to the system that may be successful, while 
Threat Modeling identifies vulnerabilities in the system that may be subject to attack. 

Authentication 

The process of confirming the identity of a user or other external entity prior to granting them 
access to the system. Authentication is performed by verifying the credentials provided by the 
external entity, which may be single factor (username and password), two factor (a hardware 
token and pin, a security token code and pin, biometric data and pin), or multi-factor (more than 
two of any of the previously mentioned credentials). 

Black Box Testing 

A method of software testing that examines the functionality of an application without visibility 
into its internal structure or design. Only the inputs to the tested item and the expected outputs 
are known. This method of testing can be applied to virtually every level of software testing: 
unit, integration, system, and acceptance. 

Checksum 

A data value representing the sum of the correct digits of a data file or message. The value is 
typically calculated by the sender before transmission and is sent with the transmitted data file or 
message. The receiver of the information then calculates the checksum of the received file or 
message and compares it to the sender’s checksum value. If the values do not match, then the 
data was either corrupted or tampered with during transmission and should not be used. 

Communication Protocol 

A formal description of digital message formats and rules. They are required to exchange 
messages between or inside computing systems. Communication protocols define properties of 
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transmission such as packet size, transmission speed, synchronization techniques, routing, and 
error correction types. Some popular protocols include File Transfer Protocol (FTP), TCP/IP, 
User Datagram Protocol (UDP), Hypertext Transfer Protocol (HTTP), and Simple Mail Transfer 
Protocol (SMTP). 

Cryptographic Protocol 

An abstract or concrete protocol that performs a security-related function and applies 
cryptographic methods. The protocol assures confidentiality, message integrity, and sometimes 
even anonymity. Some common protocols include RSA and AES encryption protocols.  

Deadlock 

A situation where two computer processes sharing the same resource effectively prevent each 
other from accessing the resource. The result is that both processes cease to function, waiting on 
the locked resource. Once deadlock occurs, all other processes attempting to access this same 
resource will also be blocked. To resolve the deadlock, one of the originally locking processes 
must be aborted. 

Encryption 

The translation of data using an encryption algorithm and encryption key into cyphertext that is 
only accessible by authorized parties with access to the correct key. Proper encryption makes 
data impossible to read without the key or password that allows for decryption. 

Format String 

An ASCII Z string that contains text and format parameters to define the desired output format 
within a format function, such as printf or fprintf. The format parameter defines the type of 
conversion performed by the format function and is specified as %X, where X represents the 
desired output format. 

Fuzzing 

Fuzzing is a black box software testing technique that provides invalid, unexpected, or random 
data as inputs to the application to discover issues or security weaknesses. There are three 
principal fuzzing techniques: Random fuzzing, Template fuzzing (also known as mutation 
fuzzing or block fuzzing) and Generational fuzzing (also known as model, RFC or standards-
based fuzzing). 

• Random fuzzing - generates random data and is the easiest way of fuzzing. However, 
random data often lacks the form and structure that is needed for an effective fuzz. 

• Template fuzzing - uses a good, known template (content from file, traffic capture, 
PC/RPC - API call, etc.) as a starting point for fuzzing. Basically, a script of data inputs 
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is defined and replayed over and over, but with changes to the data. The quality of the 
template fuzzing heavily depends on the effectiveness of the selected templates. 

• Generational fuzzing - the best kind of fuzzing where tests are created with a complete 
understanding of the fuzzed content or protocol and its specification. For example, an 
HTTP fuzzer has been implemented using the HTTP specifications and it knows every 
type of message type, every field of every message, and rules about how messages are 
exchanged. 

Penetration Testing 

Penetration testing, informally called pen testing, is an attack on a computer system that looks 
for security weaknesses, potentially gaining access to the computer’s features and data. The 
process typically identifies the target systems and a particular goal - then reviews available 
information and undertakes various means to attain the goal. A penetration test target may be a 
white box (which provides background and system information) or black box (which provides 
only basic or no information except the company name). A penetration test can help determine 
whether a system is vulnerable to attack, if the defenses were sufficient, and which defenses (if 
any) the test defeated. 

Stress Testing 

A software testing activity that determines the robustness of software by intentionally exceeding 
the limits of normal operation and monitoring the resulting behavior. 

Threat Modelling 

A procedure for optimizing security by identifying objectives and vulnerabilities and defining 
countermeasures to prevent or mitigate the effects of threats to the system. Essentially, it is 
examining the application and its environment from a security perspective to identify 
weaknesses. Identify the threats and potential mitigations of those threats to a system by: 

• decomposing the application 
• defining and classifying assets 
• exploring potential vulnerabilities 
• exploring potential threats 
• creating mitigation strategies 

Throttling Mechanism 

A method to regulate the rate or volume of throughput to an application or resource. Its goal is to 
optimize available system resources for active processes and prevent unsustainable consumption 
or resource exhaustion. Throttling may be implemented by restricting the number of threads or 
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connections, using load leveling, deferring lower priority operations, or degrading the 
performance of selected operations. 

XSS (Cross-Site-Scripting) 

A type of computer security vulnerability typically found in web applications. XSS enables 
attackers to inject client-side scripts into web pages viewed by other users. A cross-site scripting 
vulnerability may be used by attackers to bypass access controls such as the same-origin policy. 
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