

NIST Special Publication 800
NIST SP 800-204D

Strategies for the Integration of
Software Supply Chain Security in

DevSecOps CI/CD Pipelines

Ramaswamy Chandramouli
Frederick Kautz

Santiago Torres-Arias

This publication is available free of charge from:
https://doi.org/10.6028/NIST.SP.800-204D

https://crossmark.crossref.org/dialog/?doi=10.6028/NIST.SP.800-204D

NIST Special Publication 800
NIST SP 800-204D

Strategies for the Integration of
Software Supply Chain Security in

DevSecOps CI/CD Pipelines
Ramaswamy Chandramouli

Computer Security Division
Information Technology Laboratory

Frederick Kautz

TestifySec

Santiago Torres-Arias
 Electrical and Computer Engineering Department

Purdue University

This publication is available free of charge from:
https://doi.org/10.6028/NIST.SP.800-204D

February 2024

U.S. Department of Commerce
Gina M. Raimondo, Secretary

National Institute of Standards and Technology
Laurie E. Locascio, NIST Director and Under Secretary of Commerce for Standards and Technology

NIST SP 800-204D Software Supply Chain Security
February 2024 in DevSecOps CI/CD Pipelines

Certain commercial equipment, instruments, software, or materials, commercial or non-commercial, are identified
in this paper in order to specify the experimental procedure adequately. Such identification does not imply
recommendation or endorsement of any product or service by NIST, nor does it imply that the materials or
equipment identified are necessarily the best available for the purpose.

There may be references in this publication to other publications currently under development by NIST in
accordance with its assigned statutory responsibilities. The information in this publication, including concepts and
methodologies, may be used by federal agencies even before the completion of such companion publications.
Thus, until each publication is completed, current requirements, guidelines, and procedures, where they exist,
remain operative. For planning and transition purposes, federal agencies may wish to closely follow the
development of these new publications by NIST.

Organizations are encouraged to review all draft publications during public comment periods and provide feedback
to NIST. Many NIST cybersecurity publications, other than the ones noted above, are available at
https://csrc.nist.gov/publications.

Authority
This publication has been developed by NIST in accordance with its statutory responsibilities under the Federal
Information Security Modernization Act (FISMA) of 2014, 44 U.S.C. § 3551 et seq., Public Law (P.L.) 113-283. NIST is
responsible for developing information security standards and guidelines, including minimum requirements for
federal information systems, but such standards and guidelines shall not apply to national security systems
without the express approval of appropriate federal officials exercising policy authority over such systems. This
guideline is consistent with the requirements of the Office of Management and Budget (OMB) Circular A-130.

Nothing in this publication should be taken to contradict the standards and guidelines made mandatory and
binding on federal agencies by the Secretary of Commerce under statutory authority. Nor should these guidelines
be interpreted as altering or superseding the existing authorities of the Secretary of Commerce, Director of the
OMB, or any other federal official. This publication may be used by nongovernmental organizations on a voluntary
basis and is not subject to copyright in the United States. Attribution would, however, be appreciated by NIST.

NIST Technical Series Policies
Copyright, Use, and Licensing Statements
NIST Technical Series Publication Identifier Syntax

Publication History
Approved by the NIST Editorial Review Board on 2024-01-31

How to Cite this NIST Technical Series Publication:
Chandramouli R, Kautz F, Torres-Arias S (2024) Strategies for the Integration of Software Supply Chain Security in
DevSecOps CI/CD Pipelines. (National Institute of Standards and Technology, Gaithersburg, MD), NIST Special
Publication (SP) NIST SP 800-204D. https://doi.org/10.6028/NIST.SP.800-204D

Author ORCID iDs
Ramaswamy Chandramouli: 0000-0002-7387-5858

https://csrc.nist.gov/publications
https://doi.org/10.6028/NIST-TECHPUBS.CROSSMARK-POLICY
https://www.nist.gov/document/publication-identifier-syntax-nist-technical-series-publications

NIST SP 800-204D Software Supply Chain Security
February 2024 in DevSecOps CI/CD Pipelines

Contact Information
sp800-204d-comments@nist.gov

National Institute of Standards and Technology
Attn: Computer Security Division, Information Technology Laboratory
100 Bureau Drive (Mail Stop 8930) Gaithersburg, MD 20899-8930

Additional Information
Additional information about this publication is available at https://csrc.nist.gov/pubs/sp/800/204/d/final,
including related content, potential updates, and document history.

All comments are subject to release under the Freedom of Information Act (FOIA).

mailto:sp800-204d-comments@nist.gov?subject=Comments%20on%20NIST%20SP%20800-204D%20initial%20public%20draft
https://csrc.nist.gov/pubs/sp/800/204/d/final

NIST SP 800-204D Software Supply Chain Security
February 2024 in DevSecOps CI/CD Pipelines

i

Abstract

The predominant application architecture for cloud-native applications consists of multiple
microservices, accompanied in some instances by a centralized application infrastructure, such
as a service mesh, that provides all application services. This class of applications is generally
developed using a flexible and agile software development paradigm called DevSecOps. A
salient feature of this paradigm is the use of flow processes called continuous integration and
continuous deployment (CI/CD) pipelines, which initially take the software through various
stages (e.g., build, test, package, and deploy) in the form of source code through operations
that constitute the software supply chain (SSC) in order to deliver a new version of software.

This document outlines strategies for integrating SSC security measures into CI/CD pipelines.

Keywords

actor; artifact; attestation; CI/CD pipeline; package; provenance; repository; SBOM; SDLC; SLSA;
software supply chain.

Reports on Computer Systems Technology

The Information Technology Laboratory (ITL) at the National Institute of Standards and
Technology (NIST) promotes the U.S. economy and public welfare by providing technical
leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test
methods, reference data, proof of concept implementations, and technical analyses to advance
the development and productive use of information technology. ITL’s responsibilities include
the development of management, administrative, technical, and physical standards and
guidelines for the cost-effective security and privacy of other than national security-related
information in federal information systems. The Special Publication 800-series reports on ITL’s
research, guidelines, and outreach efforts in information system security, and its collaborative
activities with industry, government, and academic organizations.

NIST SP 800-204D Software Supply Chain Security
February 2024 in DevSecOps CI/CD Pipelines

ii

Patent Disclosure Notice

NOTICE: ITL has requested that holders of patent claims whose use may be required for
compliance with the guidance or requirements of this publication disclose such patent claims to
ITL. However, holders of patents are not obligated to respond to ITL calls for patents and ITL has
not undertaken a patent search in order to identify which, if any, patents may apply to this
publication.

As of the date of publication and following call(s) for the identification of patent claims whose
use may be required for compliance with the guidance or requirements of this publication, no
such patent claims have been identified to ITL.

No representation is made or implied by ITL that licenses are not required to avoid patent
infringement in the use of this publication.

NIST SP 800-204D Software Supply Chain Security
February 2024 in DevSecOps CI/CD Pipelines

iii

Table of Contents

Executive Summary ..1

1. Introduction ...2

2. Software Supply Chain (SSC) — Definition and Model ...4

2.4.1. Software Supply Chain Defects .. 6

2.4.2. Software Supply Chain Attacks ... 6

3. SSC Security — Risk Factors and Mitigation Measures ...8

3.1.1. Developer Environment ... 8

3.1.2. Threat Actors .. 8

3.1.3. Attack Vectors .. 9

3.1.4. Attack Targets (Assets) ... 9

3.1.5. Types of Exploits ... 10

3.2.1. Baseline Security .. 11

3.2.2. Controls for Interacting With SCM Systems ... 12

4. CI/CD Pipelines — Background, Security Goals, and Entities to be Trusted 13

5. Integrating SSC Security Into CI/CD Pipelines ... 15

5.1.1. Secure Build .. 16

5.1.2. Secure Pull-Push Operations on Repositories .. 17

5.1.3. Integrity of Evidence Generation During Software Updates .. 18

5.1.4. Secure Code Commits .. 19

NIST SP 800-204D Software Supply Chain Security
February 2024 in DevSecOps CI/CD Pipelines

iv

5.2.1. Secure CD Pipeline — Case Study (GitOps) .. 21

6. Summary and Conclusions .. 23

References ... 24

Appendix A. Mapping of Recommended Security Tasks in CI/CD Pipelines to Recommended High-Level
Practices in SSDF .. 26

Appendix B. Justification for the Omission of Certain Measures Related to SSDF Practices in This
Document .. 32

NIST SP 800-204D Software Supply Chain Security
February 2024 in DevSecOps CI/CD Pipelines

v

Acknowledgments

The authors would like to express their thanks to Isabel Van Wyk of NIST for her detailed
editorial review, both for the public comment version as well as for the final publication.

NIST SP 800-204D Software Supply Chain Security
February 2024 in DevSecOps CI/CD Pipelines

1

Executive Summary

Cloud-native applications are made up of multiple loosely coupled components called
microservices. This class of applications is generally developed through an agile software
development life cycle (SDLC) paradigm called DevSecOps, which uses flow processes called
Continuous Integration/Continuous Delivery (CI/CD) pipelines.

Analyses of recent software attacks and vulnerabilities have led both government and private-
sector organizations involved in software development, deployment, and integration to focus
on the activities involved in the entire SDLC. This collection of activities constitutes the software
supply chain (SSC), and the integrity of the individual activities contributes to the overall
security of an SSC. Threats can arise from attack vectors unleashed by malicious actors during
SSC activities as well as defects introduced when due diligence practices are not followed by
legitimate actors during the SDLC.

Executive Order (EO) 14028, NIST’s Secure Software Development Framework (SSDF) [2], other
government initiatives, and industry forums have discussed the security of SSC and provided a
roadmap to enhance the security of all deployed software. This document uses this roadmap as
the basis for developing actionable measures to integrate the various building blocks of SSC
security assurance into CI/CD pipelines to enhance the preparedness of organizations to
address SSC security in the development and deployment of cloud-native applications. To
demonstrate that the SSC security integration strategies for CI/CD pipelines meet the objectives
of SSDF, a mapping of these strategies to the high-level practices in the SSDF has also been
provided.

Building a robust SSC security edifice requires various artifacts, such as a software bill of
materials (SBOM) and frameworks for the attestation of software components. Since the
specification of these artifacts, their mandatory constituents, and the requirements that
processes using them must satisfy are continually evolving through projects in government
organizations and various industry forums, they are beyond the scope of this document.

NIST SP 800-204D Software Supply Chain Security
February 2024 in DevSecOps CI/CD Pipelines

2

1. Introduction

Cloud-native applications typically consist of multiple loosely coupled services or microservices
and are sometimes accompanied by an integrated application service infrastructure, such as a
service mesh. The applications are developed through an agile software development life cycle
(SDLC) paradigm called DevSecOps, which uses flow processes called Continuous Integration/
Continuous Delivery (CI/CD) pipelines. The security of applications during runtime is ensured
through various security measures, such as assigning unique service identities for microservices
and subjects that invoke those services and policy enforcement through proxies. However,
sophisticated attacks on software have been carried out through the stealthy introduction of
attack vectors during various activities in the SDLC, which collectively constitute the software
supply chain (SSC). Thus, in the context of cloud-native applications, SSC security assurance
measures must be integrated into CI/CD pipelines.

1.1. Purpose

This document outlines strategies for integrating SSC security assurance measures into CI/CD
pipelines to protect the integrity of the underlying activities. The overall goal is to ensure that
the CI/CD pipeline activities that take source code through the build, test, package, and
deployment stages are not compromised.

1.2. Scope

SSC security assurance measures use various artifacts, such as a software bill of materials
(SBOM) and frameworks for the attestation of software components. The specification of these
artifacts, their mandatory constituents, and the requirements that processes using them must
satisfy are continually evolving through projects in government organizations and various
industry forums and are, therefore, beyond the scope of this document. Rather, this document
focuses on actionable measures to integrate various building blocks for SSC security assurance
into CI/CD pipelines to enhance the preparedness of organizations to address SSC security in
the development and deployment of their cloud-native applications.

1.3. Target Audience

This document is intended for a broad group of practitioners in the software industry, including
site reliability engineers, software engineers, project and product managers, and security
architects and engineers.

1.4. Relationship to Other NIST Documents

This document is part of the NIST Special Publication (SP) 800-204 series of publications, which
offer guidance on providing security assurance for cloud-native applications that are developed
and deployed using the DevSecOps SDLC paradigm that uses CI/CD pipelines. SP 800-204C [1]

NIST SP 800-204D Software Supply Chain Security
February 2024 in DevSecOps CI/CD Pipelines

3

discusses DevSecOps, which is an agile software development paradigm for cloud-native
applications that focuses on the various types of code involved in microservices-based
applications that are supported by a service mesh infrastructure. SP 800-218 [2] provides a
comprehensive list of high-level practices and tasks for ensuring SSC security under the Secure
Software Development Framework (SSDF) based on the directives in Executive Order (EO)
14028 [3]. Other documents in the SP 800-204 series outline the mechanisms for enforcing
various types of access controls for inter-service calls in the microservices environment during
runtime.

This document presents strategies for integrating SSC security into CI/CD pipelines through the
identification of workflow tasks that can meet the goals of the various high-level practices
outlined in the SSDF. Not all practices and tasks outlined in the SSDF may be applicable to the
environment under discussion in this document – i.e., cloud-native applications developed
using the DevSecOPs SDLC paradigm with CI/CD pipelines, representing a specific application
architecture and SDLC, respectively. The SSDF is agnostic to both application architecture and
the SDLC paradigm. However, to demonstrate that the SSC security integration strategies for
CI/CD pipelines meet the objectives of SSDF, Appendix A provides a mapping of these strategies
to the high-level practices in the SSDF. However, tasks relating to secure software design and
the enterprise-level vulnerability management strategies are beyond the scope of this
document and these are indicated in Appendix B.

1.5. Document Structure

This document is organized as follows:

• Section 2 presents a series of definitions for modelling and understanding software
supply chains and their compromises.

• Section 3 provides a broad understanding of common risk factors and potential
mitigation measures with a particular focus on the software developer environment.

• Section 4 provides the background for CI/CD pipelines, the broad security goals of the
processes involved, and the entities that need to be trusted.

• Section 5 outlines strategies for integrating SSC security assurance measures into CI/CD
pipelines.

• Section 6 provides a summary and conclusions.

• Appendix A provides a mapping of the SSC security integration strategies for CI/CD
pipelines to the SSDF’s high-level practices.

• Appendix B provides a justification for the omission of certain measures related to SSDF
practices in this document.

NIST SP 800-204D Software Supply Chain Security
February 2024 in DevSecOps CI/CD Pipelines

4

2. Software Supply Chain (SSC) — Definition and Model

2.1. Definition

Most activities in the SSC strongly affect the resulting software product. As such, the security of
each individual activity is paramount for the security of the end result. This includes both the
integrity of the activities themselves as well as the assurance that all activities were carried out
and — conversely — that no unauthorized activities were injected into the chain.

While software composition (e.g., dependency management) is under the purview of software
supply chain activities, other often overlooked activities are central to the software supply
chain. This includes writing source code; building, packaging, and delivering an application; and
repackaging and containerization.

An SSC attack can take on several forms, such as:

• Subverting, removing, or introducing a step within the SSC to maliciously modify or
sabotage the resulting software product

• Stealing credentials from the build system to mint and sign unauthorized malicious
software

• Causing naming collisions

SSC attacks can have a wide range of consequences that affect the correctness, integrity, or
availability of a software product (e.g., making upstream dependencies unavailable). In practice,
attackers often target the activities mentioned above to implant backdoors and subsequently
compromise a target (i.e., end product) or exfiltrate sensitive information once the application
is delivered.

SSC security should also account for discovering and tracking software security defects rather
than simply mitigating attacks. To facilitate this, the software bill of materials (SBOM) must be
shared with end users so that they can build inventories of software components. However,
while SBOMs enable the identification of components and provenance, they do not provide
enough information to address vulnerabilities nor content to address software defects. Hence,
SBOMs alone cannot be used for vulnerability management. They simply provide the list of
components to focus on when addressing vulnerabilities or defects in software.

2.2. Economics of Security

SSC attacks have two fundamental properties that make them appealing to attackers. First, they
allow attackers to infiltrate highly-regulated environments through less secure but legitimate
channels. Second, due to the highly-interconnected nature of supply chains, they allow for
widespread damage in a short period of time.

Insufficient care in operating highly regulated environments throughout the SDLC often allows
motivated attackers to identify weak spots in the chain. In the case of SOLORIGATE [4], for

NIST SP 800-204D Software Supply Chain Security
February 2024 in DevSecOps CI/CD Pipelines

5

example, attackers identified a single point of compromise that delivered software to multiple
government agencies. Such attacks are also stealthy because they typically propagate through
legitimate channels, such as software updates, which allows for widespread damage to users of
the target software. These attacks are successful because of the significant amount of implicit
trust present in these legitimate channels, and a first defensive measure calls for the removal of
this implicit trust. Since attackers typically seek this avenue to obtain short-term benefits,
widespread attacks of this nature often rely on the use of private crypto miners and
cryptojackers. This is evidenced in the prevalence of these vectors existing in breadth-first
approaches, such as typo and combosquatting attacks. Regardless of the motivations of the
attackers, both vectors highlight the possibility of devastating impacts when attacks are
successful.

2.3. Governance Model

Due to the distributed nature of an SSC, multiple practices, developer cultures, security and
quality expectations, and legislative frameworks exist. As a consequence, there is no unified
governance model, and these distinct models often overlap.

2.4. SSC Model

At a high level, an SSC is a collection of steps that create, transform, and assess the quality and
policy conformance of software artifacts. These steps are often carried out by different actors
who use and consume artifacts to produce new artifacts. For example, a build step uses a series
of artifacts as tools (e.g., a compiler and a linker) and consumes artifacts (i.e., source code) to
produce a new artifact (i.e., the compiled binary).

Without a loss of generality, this same definition can be applied to other actions, such as
writing code, packaging an application inside of a container, and performing quality assurance.
This definition also encompasses more activities than are colloquially considered. That is, it
includes elements of secure software development, secure build systems, and dependency
management. These elements collectively define the SSC model.

While this simplified model can accommodate multiple activities, mitigations and attacks may
surface in different, nuanced ways for each activity.

NIST SP 800-204D Software Supply Chain Security
February 2024 in DevSecOps CI/CD Pipelines

6

Fig. 1. Interaction between the different elements1 of a software supply chain (SSC) step2

1 An "actor" can also be a non-human, such as a build orchestrator.
2 An SSC step stands for an SSC activity (e.g., build).

2.4.1. Software Supply Chain Defects

Much like software defects (i.e., bugs), defective artifacts can propagate throughout an SSC and
affect its security posture. A noteworthy example of such a defect is Log4Shell [5], where a
vulnerability in a highly-used software artifact allowed attackers to compromise a large number
of targets with very little effort.

If software is used in a manner that it was not originally intended or configured for, it may
result in an insecure state. However, while the line between a defect and an attack is often
blurred in the context of SSC, the guiding principle is that of intent — that is, whether or not the
upstream actor intended to exploit that defect. In the context of software engineering, not all
defects are vulnerabilities, regardless of intent. Vulnerabilities may be present for other
reasons, and that presence does not guarantee exploitation, which is what defines an attack.
Malicious actors complete the defect-attack chain by intentionally introducing weaknesses that
they can later exploit.

2.4.2. Software Supply Chain Attacks

In contrast to defects, an SSC attack is when a malicious party tampers with the steps, artifacts,
or actors within the chain to compromise the consumers of a software artifact down the line.

Explicitly, an SSC attack is a three-stage process:

1. Artifact, step, or actor compromise: An attacker compromises an element of the SSC
(see Fig. 1) to modify an artifact or the information of such.

2. Propagation: The attack propagates throughout the chain.

NIST SP 800-204D Software Supply Chain Security
February 2024 in DevSecOps CI/CD Pipelines

7

3. Exploitation: The attacker exploits the target to achieve their goals (e.g., exfiltration of
data, cryptojacking).

NIST SP 800-204D Software Supply Chain Security
February 2024 in DevSecOps CI/CD Pipelines

8

3. SSC Security — Risk Factors and Mitigation Measures

This section considers the various risk factors that are applicable to the SDLC environment and
the mitigation measures that can counter those risks.

3.1. Risk Factors, Targets, and Types of Exploits in an SSC

The risk factors in an SSC typically include:

• Vulnerabilities in the developer environment

• Threat actors

• Attack vectors

• Attack targets (i.e., assets)

• Types of exploits

3.1.1. Developer Environment

Developer workstations and their environments present a fundamental risk to the security of
an SSC and should not be trusted as part of the build process since they are at risk of
compromise. Mature SDLC processes accept code and assets into their software configuration
management (SCM) mainline and versions branches only after code reviews and scanners are in
place.

3.1.2. Threat Actors

Threat actors are generally:

• External attackers who seek privileged access to an SSC

• Disgruntled employees or contractors who perpetuate insider threats

External attackers may include foreign adversaries, criminal organizations, and cyber-activists
who target an SSC for various reasons, such as espionage or sabotage. Internal attackers pose a
significant risk, as they may have insider access to sensitive information — often using
legitimate access rights — that allow them to launch attacks or steal confidential information.
Additionally, both categories of threat actors may use a variety of techniques to compromise
the SDLC environment and steal or manipulate software, such as phishing, malware, social
engineering, and physical access. Therefore, companies should be aware of these risks and take
appropriate measures (see Sec. 3.2) to secure their SSC.

Non-malicious threat actors may also impact the security of supply chains, such as a software
engineer who inadequately manages secrets through a lack of tooling or purposeful subterfuge
for ease of use. Organizations should be aware of these situations and take suitable measures
to avoid such practices.

NIST SP 800-204D Software Supply Chain Security
February 2024 in DevSecOps CI/CD Pipelines

9

3.1.3. Attack Vectors

Attack vectors in an SSC include:

• Malware

• Code reuse or the ingest of libraries and dependencies

• Social engineering

• Network-based attacks

• Physical attacks

Attack vectors can originate from various sources, including malware attacks on developer
workstations, social engineering attacks on developers, network-based attacks on the
development environment, and physical attacks on the hardware or networks used by
developers. These different attack vectors require distinct countermeasures, including endpoint
protection software, network security controls, access control policies, and physical security
measures. Companies should identify potential risks and vulnerabilities, assess their security
posture, and implement appropriate defensive measures to mitigate threats to their SDLC
environment.

In the case of ingested code, it is essential to verify the provenance information of the
component being used to ensure that it is what it says it is and is coming from an expected
source. Mitigations for this involve caching or curating packages and components for preferred
use.

3.1.4. Attack Targets (Assets)

The assets targeted under an SSC may include:

• Source code

• Credentials

• Sensitive data

• Internal operations

• Build systems

A software developer’s workstation typically contains various assets, including source code,
credentials, and access to sensitive information, such as personally identifiable information
(PII), protected health information (PHI), intellectual property (IP), cryptographic materials (e.g.,
software artifact signing keys), and proprietary information. Companies should identify critical
assets and implement controls to protect them from unauthorized access, such as access
controls, multi-factor authentication, encryption of data at rest and in transit, and data loss
prevention (DLP) measures.

NIST SP 800-204D Software Supply Chain Security
February 2024 in DevSecOps CI/CD Pipelines

10

3.1.5. Types of Exploits

Exploits in the context of attack vectors and targeted assets in an SSC typically include:

• Injection of vulnerable or malicious dependencies into an SSC

• Stolen credentials that grant access to other systems

• Injection of malicious or vulnerable code into repositories

• Stealing secrets by submitting merge requests

Threat actors may seek to compromise various components of the SDLC process, including
source code, testing environments, development tools, and build pipelines. They may introduce
vulnerabilities, malware, or stolen credentials to gain access to other systems or compromise
sensitive data. Such threats can result in financial losses, reputational damage, physical damage
and legal consequences.

To inject malicious code into repositories, attackers may perform an operation called “forking,”
which allows the attacker to copy some repository and freely make modifications outside of the
original project. The attacker then initiates a pull request to merge the forked project with the
original project. If the project maintainer accepts the request without properly and adequately
reviewing the changes and determining them to be suitable, they will merge them into the
original project, thus introducing malicious code into the repository.

When open-source code is used, an artifact or package is often pulled from a repository based
on the reputation of the developer or the repository. However, there is no guarantee that
pulled code is the same software that the developer authored and checked into their source-
code repository. The following actions could have potentially occurred, resulting in a lack of
assurance or an inability to trust the code:

• The source code could have been modified.

• Vulnerabilities could have been introduced due to an insecure build system.

• Checks, such as scanning and various types of tests (e.g., static, dynamic, or interactive),
may have been bypassed in the CI/CD process.

• The repository owner may have improperly configured the repository, allowing
malicious actors to submit pull requests with the intention of stealing secrets configured
within a CI/CD pipeline.

3.2. Mitigation Measures

A secure SDLC environment can reduce the likelihood of security incidents and ensure the
confidentiality, integrity, and availability of software assets and systems. It is crucial to assess
security risks and implement appropriate defensive measures to protect software supply chains
against compromise.

NIST SP 800-204D Software Supply Chain Security
February 2024 in DevSecOps CI/CD Pipelines

11

The following generic mitigation measures are applicable to the entire SDLC but are particularly
relevant to an SSC:

• Patch management

• Dependency management

• Authentication and authorization

• Malware protection

• Secure SDLC

• Data protection

• Physical security

• Audit and monitoring

• Adherence to applicable security standards (e.g., regulatory requirements)

Organizations can implement various controls to mitigate risks to their SDLC environment,
including regular patch management, robust authentication, granular authorization, malware
protection, secure SDLC practices, data protection measures, physical security controls, and
auditing and monitoring tools. They should regularly assess their security posture, identify
potential weaknesses and vulnerabilities, and implement appropriate defensive measures to
address them. Organizational network policies that account for and actively block maliciously
known content-serving domains can reduce the use of software from non-curated or undesired
locations. Another integral part of SSC security involves capturing the dependencies (e.g.,
package name, version) of the artifacts in a central repository. Organizations should also ensure
that their SDLC environment remains compliant with various security and other relevant
standards, such as the Open Worldwide Application Security Project (OWASP) Top Ten, SP 800-
53, Health Insurance Portability and Accountability Act (HIPAA), and Payment Card Industry
Data Security Standard (PCI DSS).

The choice of a mitigation approach will depend on the organization’s customized threat
model. However, all developer systems should meet a predefined minimum baseline for
security to ensure that the operating system and applications are kept up to date with the
latest security patches, individual and unshared user accounts are adequately protected, and
proper access controls are enforced when interacting with SCM.

3.2.1. Baseline Security

Independent and open-source developers will need to follow best practices to protect their
own systems. Government and enterprise environments should establish and adhere to a well-
defined security policy that meets regulatory requirements and industry best practices. Since
the development of such a policy is out of scope for this document, readers should refer to SP
800-53r5 (Revision 5) [6] for a more complete treatment of this topic.

NIST SP 800-204D Software Supply Chain Security
February 2024 in DevSecOps CI/CD Pipelines

12

The following are some baseline security measures that should be adopted when integrating
open-source software (OSS) components into any enterprise project:

• The security team should establish a policy for trusted sources of OSS (e.g., allow lists)
that includes reviewing minimum coding requirements, reputational standards, and
distributing source code in a digitally signed package.

• The security team should approve the merging of unverified sources of OSS.

• Developers should download OSS as source code rather than pre-compiled libraries or
binaries, when available.

• Developers should verify digital signatures, run vulnerability scans, check for recent
updates on newly downloaded OSS’s source-code packages, and generate an SBOM
with dependency scanning on the first commit in order to identify the risks of any
upstream or downstream dependencies within the OSS.

• Artifacts should be scanned in internal repositories for newly discovered or identified
defects and the ability to stop their use in builds based on criticality.

• CI/CD processes should be audited regularly, and automation should be introduced
wherever possible to improve the performance of activities and operations.

• There should be isolated CI/CD environment and elevated administrator credentials for
the deployment of applications in clouds.

• There should be enhanced real-time monitoring and alerting mechanisms to detect
suspicious activities in CI/CD servers, especially activities that might indicate the
exfiltration of sensitive data or the tampering of builds.

3.2.2. Controls for Interacting With SCM Systems

Developers use their workstations to create, edit, and test source code. This process requires
developers to pull source code from the SCM, modify the source code, and submit changes (i.e.,
patches) back to the SCM. The proposed changes should adhere to the SDLC processes defined
by the organization. Pull access to the software depends on the policies of the software project
in question (e.g., open-source projects typically allow anyone to pull, replicate, modify, and
share the source code with minimal or copyleft restrictions). Proprietary software vendors
often enforce strict rules that describe who is allowed to access the source code and under
what conditions. In all cases, write access to the SCM should be considered a high risk and
tightly controlled. A mature SDLC process allows developers to propose patches to the SCM,
but another developer should perform a code review before the patch is merged. Code analysis
tools should be implemented to catch common mistakes, but care should be taken to not
inundate the developers with too many false positives to prevent alert fatigue.

NIST SP 800-204D Software Supply Chain Security
February 2024 in DevSecOps CI/CD Pipelines

13

4. CI/CD Pipelines — Background, Security Goals, and Entities to be Trusted

DevSecOps is an agile paradigm used for the development and deployment of cloud-native
applications. This paradigm consists of a series of stages that takes code from variously sourced
repositories (e.g., first-party or in-house, third parties or open-source/commercial) to perform
tasks or activities, such as building, packaging, testing, and deploying.

In this document, the term “artifacts” denotes source code as well as the things generated from
it, such as builds and packages. Each of the artifacts is associated with an owner. The logical
containers that hold these artifacts are called repositories. The build process is based on
application logic-driven dependencies and generates builds using many individual source-code
artifacts that are stored in build repositories. The build artifacts are tested and used to generate
packages whose artifacts are then stored in designated repositories and scanned before being
deployed in testing or production environments. These stages and the various tasks performed
at each stage are collectively called CI/CD pipelines. In other words, CI/CD pipelines use
processes called workflows to transform source artifacts to deployable packages in production
environments.

A common approach to SSC security in all of these workflows is to generate as much
provenance data as possible. Provenance data are associated with the chronology of the origin,
development, ownership, location, and changes to a system or system component, including
the personnel and processes that enabled those changes or modifications. The generation of
these data should be accompanied by corresponding mechanisms to validate, authenticate, and
leverage them in policy decisions.

From the above description of CI/CD pipelines and associated activities, one can identify the set
of security assurance measures that need to be added:

• Internal SSC security practices that are applied during the development and deployment
of first-party software

• Security practices that are applied with respect to the procurement, integration, and
deployment of third-party software (i.e., open-source and commercial software
modules)

4.1. Broad Security Goals for CI/CD Pipelines

There are two security goals in the application of SSC security measures or practices in CI/CD
pipelines:

1. Actively defend the CI/CD pipeline and build processes.

2. Ensure the integrity of upstream sources and artifacts (e.g., repositories).

The most common approach is to introduce security measures into the CI/CD platform, which
allows developers to automate their build, test, and deployment pipelines. There are many
open-source and commercial CI/CD platforms available on the market.

NIST SP 800-204D Software Supply Chain Security
February 2024 in DevSecOps CI/CD Pipelines

14

4.2. Entities That Need Trust in CI/CD Pipelines — Artifacts and Repositories

Zero trust architectures focus on protecting resources such as hardware systems (e.g., servers),
services and the application itself. The entities that access these assets (e.g., users, services,
and other servers) are not inherently trusted, and the primary goal of zero trust architecture is
to establish this trust. In the context of CI/CD pipelines, the scope of trust is much larger and
requires, at a minimum, the following steps:

• The entities involved in performing various SSC activities (e.g., building, packaging,
deployment) should be authenticated through the verification of credentials. Based on this
authentication, appropriate permissions or access rights are assigned to those entities
based on enterprise business policies through a process called authorization.

• The integrity of artifacts and the repositories where they are stored should be ensured
through the verification of the digital signatures associated with them. This integrity
assurance results in trust.

• The establishment of trust above should be a recurring process throughout the CI/CD
system since artifacts travel through various repositories to ultimately become the final
product.

• The inputs and outputs of each build step should be verified to ensure that the correct steps
have been executed by the expected component or entity.

Table 1 gives examples of entities (i.e., artifacts and repositories) that need to be trusted in
typical CI/CD pipelines [7].

Table 1. Top-level entities in the trust chain of typical CI/CD pipelines3

Artifacta

a Here, the artifacts include only those that go directly into the final software products. Other artifacts used for the security assurance of CI/CD
processes (e.g., SBOMs, vulnerability reports, and model registries that use AI models) must also be trusted.

 Repository
First-party code — In house SCM
Third-party code — Open source or
commercial

Artifact managers for language, containers,
etc.b

b The addition of attestations like VSA does not necessarily imply that the artifact manager is trusted.

Builds Build repository

Packages Package repository

3 The trust chain includes sub-elements, components, workers, attestors, and other mechanisms that must establish and reestablish trust
through interactions (i.e., handoffs of inputs and outputs).

NIST SP 800-204D Software Supply Chain Security
February 2024 in DevSecOps CI/CD Pipelines

15

5. Integrating SSC Security Into CI/CD Pipelines

In order to outline the strategies for integrating SSC security into CI/CD pipelines, it is necessary
to understand the workflows in each of the two pipelines (i.e., CI pipelines and CD pipelines)
and their overall security goals.

The prerequisites to activating CI/CD pipelines include the following:

• Harden the CI/CD execution environment (e.g., VM or pod) to reduce its attack surface.

• Define roles for the actors who operate the various CI/CD pipelines (e.g., application
updaters, package managers, deployment specialists).

• Identify the granular authorizations to perform various tasks, such as generating and
committing code to SCMs, generating builds and packages, and checking various
artifacts (e.g., builds and packages) into and out of the repositories.

• Automate the entire CI/CD pipeline through the deployment of appropriate tools. The
driver tools for CI and CD pipelines are at a higher level and invoke a sequence of
function-specific tools, such as those for code checkouts from repositories, edits and
compilation, code commits, and testing (e.g., static application security testing [SAST],
dynamic application security testing [DAST], and software composition analysis [SCA]
testers). In general, the driver tools or build control plane execute at a higher level of
trust than the individual functional steps, such as build.

• Define CI/CD pipeline activities and associated security requirements for the
development and deployment of application code; infrastructure as code, which
contains details about the deployment platform; and policy as code and configuration
code, which specify runtime settings (e.g., Yet Another Markup Language (YAML) files).

5.1. Securing Workflows in CI Pipelines

The workflows in the CI pipeline mainly consist of build operations, push/pull operations on
repositories (both public and private), software updates, and code commits.

The overall security goals for the framework used for securely running CI pipelines include:

• The capability to support both cloud-native and other types of applications.

• Standard compliant evidence structures, such as metadata and digital signatures

• Support for multiple hardware and software platforms

• Support for infrastructures for generating the evidence (e.g., SBOM generators, Digital
signature generators)

The following subsections consider the SSC security tasks for the various workflows in CI.
Although providing support for artifact testing (that generates tamper-proof records of test
runs and associated results) is an important security goal, it is beyond the scope of this
document.

NIST SP 800-204D Software Supply Chain Security
February 2024 in DevSecOps CI/CD Pipelines

16

5.1.1. Secure Build

The following tasks are required to obtain SSC security assurance in the build process:

• Specify policies regarding the build, including (a) the use of a secure isolated platform
for performing the build and hardening the build servers, (b) the tools that will be used
to perform the build, and (c) the authentication/authorization required for the
developers performing the build process.

• Enforce those build policies using techniques such as an agent and policy enforcement
engine.

• Ensure the concurrent generation of evidence for build attestation to demonstrate
compliance with secure build processes during the time of software delivery.

A common technique for facilitating the second task is to wrap commands from a CI tool with
capabilities to gather evidence and ultimately create an evidence trail of the entire SDLC [8].
The first type of evidence is from the build system itself, which should be able to confirm that
the tools or processes used are in an isolated environment. This provides internal operational
assurance. The second type of evidence that should be gathered consists of the hash of the
final build artifact, files, libraries, and other materials used in the artifacts and all events. This is
then signed by a trusted component of the build framework that is not under the control of the
developers using a digital certificate to create the attestation, which provides verifiable proof of
the quality of the software to consumers and enables them to verify the quality of that artifact
independently from the producer of the software, thus providing consumer assurance. In this
context, the artifact is the build generated by a series of CI process steps.

In the context of “concurrent generation of evidence,” the evidence generated should be
enabled by a process with a higher level of trust or isolation than the build itself to protect
against tampering. The generation of such evidence requires verification within the build as it
occurs.

The attestation for a build consists of the following components [9]:

1. Environment attestation: Environment attestation involves an inventory of the system
when the CI process happens and generally refers to the platform on which the build
process is run. The components of the platform (e.g., compiler, interpreter) must be
hardened, isolated, and secure.

2. Process attestation: Process attestation pertains to the computer programs that
transformed the original source code or materials into an artifact (e.g., compilers,
packaging tools) and/or the programs that performed testing on that software (i.e.,
code testing tool). It is sometimes difficult for tooling that simply observes CI processes
to distinguish between data that should populate the process attestation and data that
should populate the materials attestation. A file read by tooling that performs the
source transformation may be used to influence the choices that the transformation
tool makes, or it might be included in the output of the transformation itself. As a result,
the population of the process attestation should be considered “best effort.”

NIST SP 800-204D Software Supply Chain Security
February 2024 in DevSecOps CI/CD Pipelines

17

3. Materials attestation: Materials attestation pertains to any raw data and can include
configuration, source code, and other data (e.g., dependencies).

4. Artifacts attestation: An artifact is the result or outcome of a CI process. For example, if
the CI process step involves running a compiler (e.g., GNU Compiler Collection (GCC)) on
a source code written in C, the artifact that will result is an executable binary of that
source code. If the step involves running a SAST tool on the same source code, the
artifact will be the “Scan Result.” The step that generated it can be a final or
intermediate step. An attestation pertaining to this newly generated product falls under
the category of artifacts attestation.

The requirements associated with signed evidence (i.e., attestation) and its storage must
include the following:

• The attestations must be cryptographically signed using a secure key.

• The storage location must be tamper-proof and protected using robust access control.

The attestations can then be used to evaluate policy compliance. A policy is a signed document
that encodes the requirements for an artifact to be validated. The policy may include checks as
to whether each of the functionaries involved in the CI process has used the right keys to
generate the attestations, the required attestations are found, and the methodology to
evaluate the attestation against its associated metadata has also been specified. The policy
enables the verifiers to trace the compliance status of the artifact at any point during its life
cycle.

The above capabilities collectively provide the following assurances:

• The software was built by authorized systems using authorized tools (e.g., infrastructure
for each step) in the correct sequence of steps.

• There is no evidence of potential tampering or malicious activity.

5.1.2. Secure Pull-Push Operations on Repositories

The first SSC security task is to secure source-code development practices. In the context of
CI/CD pipelines, code resides in repositories, is extracted by authorized developers using a PULL
operation, is modified, and is then put back into the repositories using a PUSH operation. To
authorize these PULL-PUSH operations, two forms of checks are required:

1. The type of authentication required for developers authorized to perform the PULL-
PUSH operations. The request made by the developer must be consistent with their role
(e.g., application updater, package manager). Developers with “merge approval”
permissions cannot approve their own merges.

2. The integrity of the code in the repository can be trusted such that it can be used for
further updates.

NIST SP 800-204D Software Supply Chain Security
February 2024 in DevSecOps CI/CD Pipelines

18

The various mechanisms for ensuring the trustworthiness of the code in the repository are:

• PULL-PUSH_REQ-1: The project maintainer should run automated checks on all artifacts
covered in the change being pushed, such as unit tests, linters, integrity tests, security
checks, and more.

• PULL-PUSH-REQ-2: CI pipelines should only be run using tools when confidence is
established in the trustworthiness of the source-code origin of those tools.

• PULL-PUSH-REQ-3: The repository or source-code management system (e.g., GitHub,
GitLab) should either a) run CI workflows in sandboxed environments without access to
the network, any privileged access, or the ability to read secrets or b) have built-in
protection that incorporates a delay in CI workflow runs until they are approved by a
maintainer with write access. This built-in protection should go into effect when an
outside contributor submits a pull request to a public repository. The setting for this
protection should be at the strictest level, such as “Require approval for all outside
collaborators” [10].

• PULL-PUSH_REQ-4: If there are no built-in protections available in the source-code
management system, then external security tools with the following features are
required:

o Functionality to evaluate and enhance the security posture of the SCM systems with
or without a policy (e.g., Open Policy Agent (OPA)) to assess the security settings of
the SCM account and generate a status report with actionable recommendations.

o Functionality to enhance the security of the source-code management system by
detecting and remediating misconfigurations, security vulnerabilities, and
compliance issues.

An example of such a tool is the popular open-source tool OpenSSF scorecard.4

4 See https://securityscorecards.dev/

5.1.3. Integrity of Evidence Generation During Software Updates

The software update process is typically carried out by a special class of software development
tool called software update systems. Ensuring the security of these software update systems
plays a critical role in the overall security of an SSC. Threats to software update systems
primarily target the evidence generation process so as to erase the trail of updates and prevent
the ability to determine whether the updates were legitimate or not.

There are several types of software update systems [11]:

• Package managers that are responsible for all of the software installed on a system

• Application updaters that are only responsible for individual installed applications

.

https://securityscorecards.dev/

NIST SP 800-204D Software Supply Chain Security
February 2024 in DevSecOps CI/CD Pipelines

19

• Software library managers that install software that adds functionality, such as plugins
or programming language libraries.

The primary task performed by a software update system is to identify the files that are needed
for a given update ticket and download trusted files. At first glance, it may appear that the only
checks needed to establish trust in downloaded files are the various integrity and authenticity
checks performed by verifying the signatures on the metadata associated with individual files or
the package. However, the very process of signature generation may be vulnerable to known
attacks, so software update systems require many other security measures related to signature
generation and verification.

The evolving framework for providing security for software update systems has incorporated
many of these required security measures into its specification and prescribed some others for
future specifications. A framework is a set of libraries, file formats, and utilities that can be used
to secure new and existing software update systems. The framework should protect the signing
operation by requiring the policy defined in Sec. 5.1.1 to be satisfied prior to performing the
signing operation. The following are some of the consensus goals for the framework:

• The framework should provide protection against all known attacks on the tasks
performed by the software update systems, such as metadata (hash) generation, the
signing process, the management of signing keys, the integrity of the authority
performing the signing, key validation, and signature verification.

• The framework should provide a means to minimize the impacts of key compromise by
supporting roles with multiple keys and threshold or quorum trust (with the exception
of minimally trusted roles designed to use a single key). The compromise of roles that
use highly-vulnerable keys should have minimal impact. Therefore, online keys (i.e., keys
used in an automated fashion) should not be used for any role that clients ultimately
trust for files they may install [11]. When keys are online, exceptional care should be
taken in caring for them, such as storing them in a Hardware Security Module (HSM) and
only allowing their use if the artifacts being signed pass the policy defined in Sec. 5.1.1.

• The framework must be flexible enough to meet the needs of a wide variety of
software update systems.

• The framework must be easy to integrate with software update systems.

5.1.4. Secure Code Commits

Appropriate forms of testing should be performed before code commits, and the following
requirements must be met:

• SAST and DAST tools (covering all languages used in development) should be run in
CI/CD pipelines with code coverage reports being provided to developers and security
personnel.

NIST SP 800-204D Software Supply Chain Security
February 2024 in DevSecOps CI/CD Pipelines

20

• If open-source modules and libraries are used, dependencies must be enumerated,
understood, and evaluated for policy (potentially using appropriate SCA tools). The
security conditions that they should meet for their inclusion must also be tested.
Dependency file detectors should detect all dependencies, including transitive
dependencies with preferably no limit to the depth of nested or transitive dependencies
that are to be analyzed [19].

One SSC security measure required during code commits is the prevention of secrets getting
into the committed code. This is enabled by a scanning operation for secrets and results in a
feature called push protection [12], [20]. This feature should satisfy the following requirements:

• COMMIT-REQ-1: (e.g., personal access token) Evaluate committed code for adherence to
organizational policy, including the absence of secrets such as keys and Application
Programming Interface (API) tokens. The detected secrets should be displayed
prominently through media such as security dashboards, and appropriate alerts should
be generated upon detection of policy violations with documented methods to
remediate violations.

• COMMIT-REQ-2: Push protection features should be enabled for all repositories assigned
to an administrator [13]. Such protection should include the verification of developer
identity/authorization, the enforcement of developer signing of code commits, and file
name verification [21].

5.2. Securing Workflows in CD Pipelines

Supply chain security measures also apply to controls during the CD process. The following are
some due diligence measures that should be used during CD. These measures can be
implemented by defining verification policies for allowing or disallowing an artifact for
deployment.

• DEPLOY-REQ-1: For code that is already in the repository and ready to be deployed, a
security scanning sub-feature should be invoked to detect the presence of secrets in the
code, such as keys and access tokens. In many instances, the repository should be
scanned for the presence of secrets, even before being populated with code, since their
presence in a repository can mean that the credentials are already leaked, depending on
the repository’s visibility.

• DEPLOY-REQ-2: Before merging pull requests, it should be possible to view the details of
any vulnerable versions through a form of dependency review [15], [19].

• DEPLOY-REQ-3: If a secure build environment and associated process have been
established, it should be possible to specify that the artifact (i.e., container image) being
deployed must have been generated by that build process in order to be cleared for
deployment.

NIST SP 800-204D Software Supply Chain Security
February 2024 in DevSecOps CI/CD Pipelines

21

• DEPLOY_REQ-4: There should be evidence that the container image was scanned for
vulnerabilities and attested for vulnerability findings. An important factor in
vulnerability scans is the time when it was run. Since tools used to scan artifacts are
continuously updated to detect new and emerging vulnerabilities, more recent scan
results are more likely to be accurate and provide better assurance than results from
the past. This technique enables DevOps teams to implement a proactive container
security posture by ensuring that only verified container images are admitted into the
environment and remain trusted during runtime [14]. Specifically, it should be possible
to allow or block image deployment based on organization-defined policies.

• DEPLOY-REQ-5: The release build scripts should be periodically checked for malicious
code. Specific tasks to be performed include:

o A container image should be scanned for vulnerabilities as soon as it is built, even
before it is pushed to a registry. The early scanning feature can also be built into
local workflows.

o The tools used to interact with repositories that contain container images and
language packages should be capable of integration with CD tools, thus making all
activities an integral part of automated CD pipelines.

5.2.1. Secure CD Pipeline — Case Study (GitOps)

All operations during and after a build in the CI/CD pipeline involve interacting with a central
repository (e.g., Bitbucket, GitHub, and GitLab). The operations are collectively called GitOps,
which is an automated deployment process facilitated by open-source tools, such as Argo CD
and Flux. GitOps is carried out for both infrastructure code and application code and consist of
commits, forking, and pull and push requests. The usage of GitOps covers the following [16]:

• Managing infrastructure as code

• Managing and applying cluster configurations

• Automating the deployment of containerized applications and their configurations to
distributed systems.

The following SSC security tasks should be applied with respect to creating configuration data
prior to deployment, capturing all data pertaining to a particular release, modifying software
during runtime, and performing monitoring operations:

• GitOps-REQ-1: The process should rely on automation rather than manual operations.
For example, manually configuring hundreds of YAML files to roll back a deployment on
a cluster in a Git repository should be avoided.

• GitOps-REQ-2: Package managers that facilitate GitOps should preserve all data on the
packages that were released, including the version numbers of all modules, all
associated configuration files, and other metadata as appropriate for the software
operational environment.

NIST SP 800-204D Software Supply Chain Security
February 2024 in DevSecOps CI/CD Pipelines

22

• GitOps-REQ-3: Changes should not be manually applied at runtime (e.g., kubectl).
Instead, changes should be made to the relevant code, and a new release that
incorporates those changes should be triggered. This ensures that Git commits remain
the single source of truth for what runs in the cluster.

• GitOps-REQ-4: Since the Git repository contains the application definitions and
configuration as code, it should be pulled automatically and compared with the
specified state of these configurations (i.e., monitoring and remediation for drift). For
any configurations that deviate from their specified state, the following actions may be
performed:

o Administrators can choose to automatically resync configurations to the defined
state.

o Notifications should be sent regarding the differences, and manual remediation
should be performed.

5.3. SSC Security for CI/CD Pipelines — Implementation Strategy

The extensive set of steps needed for SSC security cannot be implemented all at once in the
SDLC of all enterprises without a great deal of disruption to underlying business processes and
operational costs. Rather, solutions that provide SSC security can be broadly classified into the
following types [17]:

1. Solutions that ensure SSC security through features associated with each task in the
DevSecOps pipelines:

a. Verifying that the software is built correctly by ensuring tamper-proof build
pipelines, such as by providing verified visibility into the dependencies and steps
used in the build [18], since compromised dependencies or build tools are the
greatest sources for poisoned workflows.

b. Including features for the specification of checklists for each step of the delivery
pipeline to provide guidance for implementation and to check and enforce
controls for complying with checklists.

2. Solutions that ensure integrity and provenance through digital signatures and
attestations

3. Strategy to ensure that running code is up to date, such as instituting a “build horizon”
(i.e., code that is older than a certain time period should not be launched), to keep
production as close as possible to the committed code in the repositories.

4. Securing CI/CD clients to prevent malicious code from stealing confidential information
(e.g., proprietary source code, signing keys, cloud credentials), reading environment
variables that may contain secrets, or exfiltrating data to an adversary-controlled
remote endpoint.

NIST SP 800-204D Software Supply Chain Security
February 2024 in DevSecOps CI/CD Pipelines

23

6. Summary and Conclusions

This document provided an overview of strategies for integrating SSC security assurance
measures into the various workflows associated with CI/CD pipelines, which is a methodology
in the DevSecOps paradigm that is widely used for the development and deployment of cloud-
native applications. However, no recommendations were provided with respect to the specific
artifacts and frameworks associated with SSC security, such as SBOMs, code signing, and
attestation. This is due to the fact that specifications and the standards associated with them
are still evolving as part of projects in government institutions and industry forums. Further,
NIST is aware of the emergence of a DevSecOps platform that provides an integrated set of
services covering both CI and CD pipelines. Since this platform is not yet mature and there is a
lack of consensus regarding the set of baseline features pertaining to it, the requirements for
the secure use of this platform to carry out the activities in the CI/CD workflows are not
discussed in this document.

NIST SP 800-204D Software Supply Chain Security
February 2024 in DevSecOps CI/CD Pipelines

24

References

[1] Chandramouli R (2022) Implementation of DevSecOps for a Microservices-based
Application with Service Mesh. (National Institute of Standards and Technology,
Gaithersburg, MD), NIST Special Publication (SP) NIST SP 800-204C.
https://doi.org/10.6028/NIST.SP.800-204C

[2] Souppaya M, Scarfone K, Dodson D (2022) Secure Software Development Framework
(SSDF) Version 1.1: Recommendations for Mitigating the Risk of Software Vulnerabilities.
(National Institute of Standards and Technology, Gaithersburg, MD), NIST Special
Publication (SP) NIST SP 800-218. https://doi.org/10.6028/NIST.SP.800-218

[3] EO 14028 (2021) Improving the Nation’s Cybersecurity. Available at
https://www.federalregister.gov/documents/2021/05/17/2021-10460/improving-the-
nations-cybersecurity

[4] Goud N (2021) What is Solarigate. Available at https://www.cybersecurity-
insiders.com/what-is-solorigate/

[5] Berger A (2023) What is Log4Shell? Available at
https://www.dynatrace.com/news/blog/what-is-
log4shell/#:~:text=Log4Shell%20is%20a%20software%20vulnerability,logging%20error%2
0messages%20in%20applications

[6] Joint Task Force (2020) Security and Privacy Controls for Information Systems and
Organizations. (National Institute of Standards and Technology, Gaithersburg, MD), NIST
Special Publication (SP) 800-53, Rev. 5. Includes updates as of December 10, 2020.
https://doi.org/10.6028/NIST.SP.800-53r5

[7] Lorenc D (2021) Zero Trust Supply Chain Security. Available at
https://dlorenc.medium.com/zero-trust-supply-chain-security-e3fb8b6973b8

[8] Testify/Witness (2023) Witness – Secure Your Supply Chain. Available at
https://github.com/testifysec/witness/

[9] Kennedy C (2021) What is a Software Supply Chain Attestation – and Why do I need it?
Available at https://www.testifysec.com/blog/what-is-a-supply-chain-attestation/

[10] Gelb Y (2023) Mass Scanning of Popular GitHub Repos for CI Misconfiguration. Available at
https://medium.com/checkmarx-security/mass-scanning-of-popular-github-repos-for-ci-
misconfiguration-cd36ad6be788

[11] TUF V1.0.31 (2022) The Update Framework Specification. Available at
https://theupdateframework.github.io/specification/latest/

[12] Malik Z, Sulakian M (2023) Push Protection is generally available. Available at
https://github.blog/2023-05-09-push-protection-is-generally-available-and-free-for-all-
public-
repositories/?utm_source=thenewstack&utm_medium=website&utm_content=inline-
mention&utm_campaign=platform

[13] GitHub Docs (2023) Enabling Security Features for Multiple Repositories. Available at
https://docs.github.com/en/enterprise-cloud@latest/code-security/security-
overview/enabling-security-features-for-multiple-repositories

https://doi.org/10.6028/NIST.SP.800-204C
https://doi.org/10.6028/NIST.SP.800-218
https://www.federalregister.gov/documents/2021/05/17/2021-10460/improving-the-nations-cybersecurity
https://www.federalregister.gov/documents/2021/05/17/2021-10460/improving-the-nations-cybersecurity
https://www.cybersecurity-insiders.com/what-is-solorigate/
https://www.cybersecurity-insiders.com/what-is-solorigate/
https://www.dynatrace.com/news/blog/what-is-log4shell/#:%7E:text=Log4Shell%20is%20a%20software%20vulnerability,logging%20error%20messages%20in%20applications
https://www.dynatrace.com/news/blog/what-is-log4shell/#:%7E:text=Log4Shell%20is%20a%20software%20vulnerability,logging%20error%20messages%20in%20applications
https://www.dynatrace.com/news/blog/what-is-log4shell/#:%7E:text=Log4Shell%20is%20a%20software%20vulnerability,logging%20error%20messages%20in%20applications
https://doi.org/10.6028/NIST.SP.800-53r5
https://dlorenc.medium.com/zero-trust-supply-chain-security-e3fb8b6973b8
https://github.com/testifysec/witness/
https://www.testifysec.com/blog/what-is-a-supply-chain-attestation/
https://medium.com/checkmarx-security/mass-scanning-of-popular-github-repos-for-ci-misconfiguration-cd36ad6be788
https://medium.com/checkmarx-security/mass-scanning-of-popular-github-repos-for-ci-misconfiguration-cd36ad6be788
https://theupdateframework.github.io/specification/latest/
https://github.blog/2023-05-09-push-protection-is-generally-available-and-free-for-all-public-repositories/?utm_source=thenewstack&utm_medium=website&utm_content=inline-mention&utm_campaign=platform
https://github.blog/2023-05-09-push-protection-is-generally-available-and-free-for-all-public-repositories/?utm_source=thenewstack&utm_medium=website&utm_content=inline-mention&utm_campaign=platform
https://github.blog/2023-05-09-push-protection-is-generally-available-and-free-for-all-public-repositories/?utm_source=thenewstack&utm_medium=website&utm_content=inline-mention&utm_campaign=platform
https://github.blog/2023-05-09-push-protection-is-generally-available-and-free-for-all-public-repositories/?utm_source=thenewstack&utm_medium=website&utm_content=inline-mention&utm_campaign=platform
https://docs.github.com/en/enterprise-cloud@latest/code-security/security-overview/enabling-security-features-for-multiple-repositories
https://docs.github.com/en/enterprise-cloud@latest/code-security/security-overview/enabling-security-features-for-multiple-repositories

NIST SP 800-204D Software Supply Chain Security
February 2024 in DevSecOps CI/CD Pipelines

25

[14] Cloud Build (2023) Securing Image Deployments to Cloud Run and GKE. Available at
https://cloud.google.com/build/docs/securing-builds/secure-deployments-to-run-gke

[15] GitHub Docs (2023) About dependency review. Available at
https://docs.github.com/en/enterprise-cloud@latest/code-security/supply-chain-
security/understanding-your-software-supply-chain/about-dependency-review

[16] Williams A (2021) A Blueprint for Supply Chain Security. Published by Newstack
[17] Crane D (2023) Five Stages for A Secure Software Supply Chain. Available at

https://danacrane.medium.com/five-stages-for-a-secure-software-supply-chain-
f8420841cc3a

[18] CyRise (2023) Supply Chain Security with Ensignia. Available at
https://medium.com/@cyrise/supply-chain-security-with-ensignia-483c1d872639

[19] GitLab Docs (2023) Dependency Scanning. Available at
https://docs.gitlab.com/ee/user/application_security/dependency_scanning/index.html

[20] GitLab Docs (2023) Secret Detection. Available at
https://docs.gitlab.com/ee/user/application_security/secret_detection/

[21] GitLab Docs (2023) Push Rules. Available at
https://docs.gitlab.com/ee/user/project/repository/push_rules.html

https://cloud.google.com/build/docs/securing-builds/secure-deployments-to-run-gke
https://docs.github.com/en/enterprise-cloud@latest/code-security/supply-chain-security/understanding-your-software-supply-chain/about-dependency-review
https://docs.github.com/en/enterprise-cloud@latest/code-security/supply-chain-security/understanding-your-software-supply-chain/about-dependency-review
https://danacrane.medium.com/five-stages-for-a-secure-software-supply-chain-f8420841cc3a
https://danacrane.medium.com/five-stages-for-a-secure-software-supply-chain-f8420841cc3a
https://medium.com/@cyrise/supply-chain-security-with-ensignia-483c1d872639
https://docs.gitlab.com/ee/user/application_security/dependency_scanning/index.html
https://docs.gitlab.com/ee/user/application_security/secret_detection/
https://docs.gitlab.com/ee/user/project/repository/push_rules.html

NIST SP 800-204D Software Supply Chain Security
February 2024 in DevSecOps CI/CD Pipelines

26

Appendix A. Mapping of Recommended Security Tasks in CI/CD Pipelines to Recommended
High-Level Practices in SSDF

Table 2. Mapping of recommended CI/CD pipeline security tasks to SSDF practices

Section Recommended Security Tasks in CI/CD Pipeline Recommended High-Level Practice
in SSDF

5.1.1 Secure Build —
Policies for Build
Process and
Mechanisms to
Enforce Policies

5.2 Securing
Workflows in CD
Pipelines

 Specify policies regarding the build. The policies
include (a) the use of a secure isolated platform
for performing the build, (b) the tools that will
be used to perform the build, and (c) the
authentication/authorization required for
developers performing the build process.
Enforce those build policies using an agent or
some other means and a policy enforcement
engine.
DEPLOY-REQ-1: For code that is already in the
repository and ready to be deployed, a security
scanning sub-feature should be invoked to
detect the presence of secrets in the code, such
as keys and access tokens. In many instances,
the repository should be scanned for the
presence of secrets, even before being
populated with code, since their presence in a
repository can mean that the credentials are
already leaked, depending on repository
visibility.
DEPLOY-REQ-2: Before merging pull requests, it
should be possible to view the details of any
vulnerable versions through a form of
dependency review [15], [19].
DEPLOY-REQ-3: If a secure build environment
and associated process have been established,
it should be possible to specify that the artifact
(i.e., container image) being deployed must
have been generated by that build process in
order to be cleared for deployment.
DEPLOY_REQ-4: Check for evidence that the
container image was scanned for vulnerabilities
and attested for vulnerability findings. An
important factor in vulnerability scans is the
time when it was run. Since tools used to scan
artifacts are continuously updated to detect
new and emerging vulnerabilities, more recent
scans results are more likely to be accurate and
provide better assurance than results from the
past. This technique enables DevOps teams to
implement a proactive container security
posture by ensuring that only verified container
images are admitted into the environment and
remain trusted during runtime [14]. Specifically,

Define Security Requirements for
Software Development (PO.1):
Ensure that the security
requirements for software
development are known at all times
so that they can be considered
throughout the SDLC, and the
duplication of effort can be
minimized. This includes
requirements from internal sources
(e.g., the organization’s policies,
business objectives, and risk
management strategy) and external
sources (e.g., applicable laws and
regulations).

NIST SP 800-204D Software Supply Chain Security
February 2024 in DevSecOps CI/CD Pipelines

27

Section Recommended Security Tasks in CI/CD Pipeline Recommended High-Level Practice
in SSDF

it should be possible to allow or block image
deployment based on organization-defined
policies.
DEPLOY-REQ-5: Periodically check the release
build scripts for malicious code. The tasks to be
performed include:
• A container should be scanned for

vulnerabilities as soon as it is built, even
before it is pushed to a registry. The early
scanning feature can also be built into local
workflows.

• The tools used to interact with repositories
that contain container images and language
packages should be capable of integration
with CD tools, thus making all activities an
integral part of automated CD pipelines.

5 Integrating SSC
Security in CI/CD
Pipelines

The prerequisites for activating CI/CD pipelines
are:
• Define roles for the actors operating the

various CI/CD pipelines (e.g., application
updaters, package managers, deployment
specialists).

• Identify the granular authorizations to
perform various tasks, such as generating
and committing code to SCMs, generating
builds and packages, and checking various
artifacts (e.g., builds and packages) into and
out of the repositories.

Implement Roles and
Responsibilities (PO.2): Ensure that
everyone inside and outside of the
organization involved in the SDLC is
prepared to perform their SDLC-
related roles and responsibilities
throughout the SDLC.

5 Integrating SSC
Security in CI/CD
Pipelines

The entire CI/CD pipeline must be automated
through the deployment of appropriate tools as
a prerequisite for activating CI/CD pipelines.
The driver tools for CI and CD pipelines are at a
higher level and invoke a sequence of function-
specific tools, such as those for code checkouts
from repositories, edits and compilation, code
commits, and testing (e.g., static application
security testing [SAST], dynamic application
security testing [DAST], and software
composition analysis [SCA]. In general, the
driver tools or build control plane execute at a
higher level of trust than the individual
functional steps, such as build.

Implement Supporting Toolchains
(PO.3): Use automation to reduce
human effort and improve the
accuracy, reproducibility, usability,
and comprehensiveness of security
practices throughout the SDLC, as
well as provide a way to document
and demonstrate the use of these
practices. Toolchains and tools may
be used at different levels of the
organization, such as organization-
wide or project-specific, and may
address a particular part of the
SDLC, like a build pipeline.

NIST SP 800-204D Software Supply Chain Security
February 2024 in DevSecOps CI/CD Pipelines

28

Section Recommended Security Tasks in CI/CD Pipeline Recommended High-Level Practice
in SSDF

5.1.4 Secure Code
Commits

Appropriate forms of testing should be
performed before code commits, and the
following requirements must be met:
• SAST and DAST tools (covering all

languages used in development) should be
run in CI/CD pipelines with code coverage
reports being provided to developers and
security personnel.

• If open-source modules and libraries are
used, dependencies must be enumerated,
understood, and evaluated for policy
(potentially using appropriate SCA tools).
The security conditions they should meet
for their inclusion must also be tested.
Dependency file detectors should detect all
dependencies, including transitive
dependencies with preferably no limit to
the depth of nested or transitive
dependencies that are to be analyzed [19].

Define and Use Criteria for
Software Security Checks (PO.4):
Help ensure that the software
resulting from the SDLC meets the
organization’s expectations by
defining and using criteria for
checking the software’s security
during development.

5.1.1 Secure Build
Policies for Build
Process and
Mechanisms for
Enforcement of
Policies

Already covered under meeting requirements
for PO.1.

In addition:

1. Environment attestation: Environment
attestation involves an inventory of the
system when the CI process happens. It
generally refers to the platform on which
the build process is run. This platform must
be hardened, isolated, and secure.

Implement and Maintain Secure
Environments for Software
Development (PO.5): Ensure that all
components of the environments for
the SDLC are strongly protected
from internal and external threats to
prevent the environments or the
software in them from being
compromised. Examples of SDLC
components include development,
build, test, and deployment.

5.1.2 Secure PULL-
PUSH Operations on
Repositories

All forms of code used in the SDLC reside in
repositories. Code is extracted from these
repositories by authorized developers using a
PULL operation, modified, and then put back
into the repositories using a PUSH operation. To
authorize these PULL-PUSH operations, two
forms of checks are required:

1. The type of authentication required for
developers authorized to perform the
PULL-PUSH operations. The request made
by the developer must be consistent with
their role (e.g., application updater,
package manager). Developers with
“merge approval” permissions cannot
approve their own merges.

Protect All Forms of Code From
Unauthorized Access and
Tampering (PS.1): Help prevent
unauthorized changes to code, both
inadvertent and intentional, that
could circumvent or negate the
intended security characteristics of
the software. For code that is not
intended to be publicly accessible,
this helps prevent theft and may
make it more difficult or time-
consuming for attackers to find
vulnerabilities in the software.

NIST SP 800-204D Software Supply Chain Security
February 2024 in DevSecOps CI/CD Pipelines

29

Section Recommended Security Tasks in CI/CD Pipeline Recommended High-Level Practice
in SSDF

2. The integrity of the code in the repository
can be trusted such that it can be used for
further updates.

5.1.3 Integrity of
Evidence Generation
During Software
Updates
(To provide
assurance to
acquirers that the
software they get is
legitimate, steps are
taken to protect the
integrity of evidence
generation tasks)

1. The framework should provide protection
against all known attacks on the tasks
performed by the software update
systems, such as metadata (hash)
generation, the signing process, the
management of signing keys, the integrity
of the authority performing the signing, key
validation, and signature verification.

2. The framework should provide a means to
minimize the impact of key compromise by
supporting roles with multiple keys and
threshold or quorum trust (with the
exception of minimally trusted roles
designed to use a single key). The
compromise of roles that use highly-
vulnerable keys should have minimal
impact. Therefore, online keys (i.e., keys
used in an automated fashion) must not be
used for any role that clients ultimately
trust for files they may install [11]. When
keys are online, exceptional care should be
taken in caring for them, such as storing
them in an HSM and only allowing their use
if the artifacts being signed pass the policy
defined in Sec. 5.1.1.

3. The framework must be flexible enough to
meet the needs of a wide variety of
software update systems.

4. The framework must be easy to integrate
with software update systems.

Provide a Mechanism for Verifying
Software Release Integrity (PS.2):
Help software acquirers ensure that
the software they acquire is
legitimate and has not been
tampered with.

5.2.1 Secure CD
Pipeline — Case
Study (GitOps)

The following SSC security tasks should be
applied when creating configuration data prior
to deployment, capturing all data pertaining to
a particular release, modifying software during
runtime, and performing monitoring
operations:

• GitOps-REQ-2: Package managers that
facilitate GitOps should preserve all data on
the packages that were released, including
the version numbers of all modules, all
associated configuration files, and other
metadata as appropriate for the software
operational environment.

Archive and Protect Each Software
Release (PS.3): Preserve software
releases in order to help identify,
analyze, and eliminate
vulnerabilities discovered in the
software after release.

NIST SP 800-204D Software Supply Chain Security
February 2024 in DevSecOps CI/CD Pipelines

30

Section Recommended Security Tasks in CI/CD Pipeline Recommended High-Level Practice
in SSDF

5.1.2 Secure PULL-
PUSH Operations on
Repositories
(Implements secure
coding and build
processes to improve
security through
various checks during
PULL-PUSH
operations)

• PULL-PUSH_REQ-1: The project maintainer
should run automated checks on all
artifacts covered in the pull request, such
as unit tests, linters, integrity tests, security
checks, and more.

• PULL-PUSH-REQ-2: CI pipelines should only
use external tools (e.g., Jenkins) when
confidence is established in the
trustworthiness of the source-code origin.

• PULL-PUSH-REQ-3: The repository or
source-code management system (e.g.,
GitHub, GitLab) should have built-in
protection that incorporates a delay in CI
workflow runs until they are approved by a
maintainer with write access. This built-in
protection should go into effect when an
outside contributor submits a pull request
to a public repository. The setting for this
protection should be at the strictest level,
such as “Require approval for all outside
collaborators” [10].

• PULL-PUSH_REQ-4: If there are no built-in
protections available in the source-code
management system, then external
security tools with the following features
are required:

o Functionality to evaluate and
enhance the security posture of
the SCM systems with or without a
policy (e.g., OPA) to assess the
security settings of the SCM
account and generate a status
report with actionable
recommendations

o Functionality to enhance the
security of the source-code
management system by detecting
and remediating
misconfigurations, security
vulnerabilities, and compliance
issues

Create Source Code by Adhering to
Secure Coding Practices (PW.5):
Decrease the number of security
vulnerabilities in the software and
reduce costs by minimizing
vulnerabilities introduced during
source-code creation that meet or
exceed organization-defined
vulnerability severity criteria.

5.1.1 Secure Build
(Addresses the
requirements for
PW.6 through
security
requirements for the
build platform)

Environment attestation: Environment
attestation involves an inventory of the system
when the CI process happens and generally
refers to the platform on which the build
process is run. The components of the platform
(e.g., compiler, interpreter) must be hardened,
isolated, and secure.

Configure the Compilation,
Interpreter, and Build Processes to
Improve Executable Security
(PW.6): Decrease the number of
security vulnerabilities in the
software and reduce costs by
eliminating vulnerabilities before
testing occurs.

NIST SP 800-204D Software Supply Chain Security
February 2024 in DevSecOps CI/CD Pipelines

31

Section Recommended Security Tasks in CI/CD Pipeline Recommended High-Level Practice
in SSDF

5.1.4 Secure Code
Commits

Appropriate forms of testing should be
performed before code commits, and the
following requirements must be met:

• Both SAST and DAST tools used in CI/CD
pipelines must provide coverage for the
different language systems used in cloud-
native applications.

• If open-source modules and libraries are
used, dependencies must be detected
using appropriate SCA tools, and the
security conditions they should meet for
their inclusion must also be tested.

Test Executable Code to Identify
Vulnerabilities and Verify
Compliance With Security
Requirements (PW.8): Identify
vulnerabilities so that they can be
corrected before the software is
released. Using automated methods
lowers the effort and resources
needed to detect vulnerabilities and
improves traceability and
repeatability. Executable code
includes binaries, directly executed
bytecode and source code, and any
other form of code that an
organization deems executable.

5 Integrating SSC
Security into CI/CD
Pipelines

Define CI/CD pipeline activities and associated
security requirements for the development and
deployment of application code; infrastructure
as code, which contains details about the
deployment platform; and policy as code and
configuration code, which specify runtime
settings (e.g., YAML files).

Configure Software to Have Secure
Settings by Default (PW.9): Improve
the security of the software at the
time of installation to reduce the
likelihood of the software being
deployed with weak security
settings, thus putting it at greater
risk of compromise.

NIST SP 800-204D Software Supply Chain Security
February 2024 in DevSecOps CI/CD Pipelines

32

Appendix B. Justification for the Omission of Certain Measures Related to SSDF Practices in
This Document

Table 3. Justification for the omission of certain SSDF practices

SSDF Practice Justification for Omission

Produce Well-Secured Software (PW)
PW1 through PW4, PW7

These practices pertain to secure software design,
review of the design, and software reuse. CI/CD
pipelines focus on setting up the environment for
secure development and deployment in DevSecOps
SDLC rather than software design.

Respond to Vulnerabilities (RV)
RV1 through RV3

Vulnerability management strategies are at the
organization policy level and are not specific to CI/CD
pipelines.

	Executive Summary
	1. Introduction
	1.1. Purpose
	1.2. Scope
	1.3. Target Audience
	1.4. Relationship to Other NIST Documents
	1.5. Document Structure

	2. Software Supply Chain (SSC) — Definition and Model
	2.1. Definition
	2.2. Economics of Security
	2.3. Governance Model
	2.4. SSC Model
	2.4.1. Software Supply Chain Defects
	2.4.2. Software Supply Chain Attacks

	3. SSC Security — Risk Factors and Mitigation Measures
	3.1. Risk Factors, Targets, and Types of Exploits in an SSC
	3.1.1. Developer Environment
	3.1.2. Threat Actors
	3.1.3. Attack Vectors
	3.1.4. Attack Targets (Assets)
	3.1.5. Types of Exploits

	3.2. Mitigation Measures
	3.2.1. Baseline Security
	3.2.2. Controls for Interacting With SCM Systems

	4. CI/CD Pipelines — Background, Security Goals, and Entities to be Trusted
	4.1. Broad Security Goals for CI/CD Pipelines
	4.2. Entities That Need Trust in CI/CD Pipelines — Artifacts and Repositories

	5. Integrating SSC Security Into CI/CD Pipelines
	5.1. Securing Workflows in CI Pipelines
	5.1.1. Secure Build
	5.1.2. Secure Pull-Push Operations on Repositories
	5.1.3. Integrity of Evidence Generation During Software Updates
	5.1.4. Secure Code Commits

	5.2. Securing Workflows in CD Pipelines
	5.2.1. Secure CD Pipeline — Case Study (GitOps)

	5.3. SSC Security for CI/CD Pipelines — Implementation Strategy

	6. Summary and Conclusions
	References
	Appendix A. Mapping of Recommended Security Tasks in CI/CD Pipelines to Recommended High-Level Practices in SSDF
	Appendix B. Justification for the Omission of Certain Measures Related to SSDF Practices in This Document

